Блок питания своими руками

Сборка источника питания с Aliexpress

Возникла надобность в двуполярном источнике питания для предварительного усилителя. Побродив полчаса по известной китайской барахолке, решил приобрести набор для самостоятельной сборки оного. Набор был куплен потому что он слегка подешевле готовой платы, и самое главное по части пайки себе доверия больше. Фотка собранного источника.

Выбранный источник включает трансформатор, что для меня было решающим. Конечно можно было купить и без, но тогда пришлось бы выбирать трансформатор из наличия, а у меня завалялись только весьма мощные (и тяжелые) экземпляры.

Характеристики:

Входное напряжение 220В переменный (на самом деле есть возможность питать от 110В)

Выходное напряжение +12-20В, -12-20В выставляется потенциометрами

Мощность 15Ватт (общая)

Комплект поставки:

Все приехало в обычном пластиковом конверте, внутри пару слоев пузырчатой пленки, в которой пара пакетов с платой и компонентами.

Ни принципиальной ни монтажной схемы конечно-же не было. Хотя на самой плате есть вполне разумные надписи, как раз там, где они нужны.

Обычно тяжко читать надписи на компонентах под ярким светом, поэтому сфотографировал. На удивление стабилизаторы оказались фирмы ON Semiconductor.

Плата исполнена хорошо, практически вся передняя сторона это экран, однако есть замечание: отверстия для крепления обычно выполняют, так чтобы винты крепления соединялись с экраном и заземляли экран на корпус. Здесь все залито маской… причина неясна, но никто не мешает процарапать маску и получить желаемое.

Трансформатор тороидальный, с пластиковым кожухом, залит компаундом и имеет отверстие для крепления к плате. С него и начинаем сборку. Припаиваем входные клеммы и трансформатор.

Как видно трансформатор имеет две обмотки на входе по 115 вольт, в нашем случае их надо объединить. Начала обмоток помечены точкой под цифрой. Есть два варианта:

  1. впаять перемычку R1 (0 ом резистор формата 0805 или просто проволочку)
  2. объединить две внутренние клеммы

Я выбрал второй вариант, чтобы занять клеммы и случайно не подключить туда сетевой провод.

Сборка:

Далее паяем детали, начиная с самых маленьких по высоте, это позволит нам спокойно паять детали, просто придерживая их пальцем, без всяких пинцетов.

Потом устанавливаем те, что повыше.

Потом все остальные:

На этом сборка в принципе окончена, можно приступать к настройке напряжения, но перед этим я таки процарапал маску и поставил изделие на бронзовые стойки. Потом буду крепить к корпусу усилителя.

Настройка:

Настройка предельно проста, подсоединяем 220В (осторожно, выводы трансформатора и входного клемника под напряжением. ) тыкаем тестером в канал с плюсовым питанием и вращая потенциометр добиваемся нужного напряжения, в моем случае +15В. Далее повторяем процедуру для минусового источника. Потенциометры много оборотистые, крутить придется долго.

Не следует подключать нагрузку до выставления правильно напряжения, у меня потенциометры были выкручены на 20Вольт.

Измерения без нагрузки показали 17 вольт переменного на выходах с обмоток трансформатора и около 21 вольта после диодного моста. В принципе запас вполне достаточный, учитывая, что под нагрузкой напряжение конечно просядет.

Потом подключил осциллограф и попробовал замерить пульсации, намерил примерно 120мВ.

Вывод:

Плата понравилась, даже не смотря на некоторую странность с крепежными отверстиями. Все для сборки в комплекте, качество компонентов нареканий не вызвало.

Лабораторный блок питания своими руками

Подача напряжения питания для различной электронной аппаратуры может осуществляться не только от заводских устройств. Блок питания (БП) своими руками можно сделать и в домашних условиях. В том случае, когда такой аппарат нужен для постоянной работы с различными напряжениями при регулировке: усилителей, генераторов и других самодельных схем, желательно, чтобы он был лабораторным.

Схемы блоков питания

Напряжение лабораторного БП располагается в интервале от 0 до 35 вольт. Для этой цели подходят схемы, по которым можно собрать следующие БП:

  • однополярный;
  • двуполярный;
  • лабораторный импульсный.

Конструкции подобных устройств обычно собраны либо на обычных трансформаторах напряжения (ТН), либо на импульсных трансформаторах (ИТ).

Внимание! Отличие ИТ от ТН в том, что на обмотки ТН подается синусоидальное переменное напряжение, а на обмотки ИТ приходят однополярные импульсы. Схема включения обоих абсолютно идентична.

Простой лабораторный

Однополярный БП с возможностью регулировать выходное напряжение можно собрать по схеме, в которую входят:

  • понижающий трансформатор Tr ( 220/12…30 В);
  • диодный мост Dr для выпрямления пониженного переменного напряжения;
  • электролитический конденсатор С1 (4700 мкФ*50В) для сглаживания пульсации переменной составляющей;
  • потенциометр для регулировки выходного напряжения Р1 5 кОм;
  • сопротивления R1, R2, R3 номиналом 1кОм, 5,1 кОм и 10 кОм, соответственно;
  • два транзистора: Т1 КТ815 и Т2 КТ805, которые желательно установить на теплоотводы;
  • для контроля напряжения на выходе устанавливают цифровой вольтамперметр, с интервалом измерений от 1,5 до 30 В.

В коллекторную цепь транзистора Т2 включены: С2 10 мкф * 50 В и диод Д1.

К сведению. Диод устанавливают для защиты С2 от переполюсовки при подключении к аккумуляторам для подзарядки. Если такая процедура не предусмотрена, можно заменить его перемычкой. Все диоды должны выдерживать ток не менее 3 А.

Двухполярный источник питания

Для питания усилителей низкой частоты (УНЧ), имеющих два “плеча” усиления возникает необходимость в применении двухполярного БП.

Важно! Если монтировать лабораторный БП, стоит остановить внимание именно на аналогичной схеме. Источник питания должен поддерживать любые форматы выдаваемого постоянного напряжения.

Для такой схемы допустимо применять трансформатор с двумя обмотками на 28 В и одной на 12 В. Первые две – для усилителя, третья – для питания охлаждающего вентилятора. Если таковой не окажется, то достаточно двух обмоток равного напряжения.

Для регулировки выходного тока применены наборы резисторов R6-R9, подключаемые с помощью сдвоенного галетного переключателя (5 положений). Резисторы подбирают такой мощности, чтобы они выдерживали ток более 3 А.

Внимание! Установленные светодиоды гаснут при срабатывании защиты по току, если он превышает значение 3 А.

Переменный резистор R нужно брать сдвоенный номиналом 4.7 Ом. Так проще осуществлять регулировку по обоим плечам. Стабилитроны VD1 Д814 соединены последовательно для получения 28 В (14+14).

Для диодного моста можно взять диоды подходящей мощности, рассчитанные на ток до 8 А. Допустимо устанавливать диодную сборку типа KBU 808 или аналогичную. Транзисторы КТ818 и КТ819 необходимо установить на радиаторы.

Подбираемые транзисторы должны иметь коэффициент усиления от 90 до 340. БП после сборки не требует специальной наладки.

Лабораторный импульсный бп

Отличительной чертой ИПБ является рабочая частота, которая в сто раз выше частоты сети. Это дает возможность получить большее напряжение при меньшем количестве витков обмотки.

Информация. Чтобы получить 12 В на выходе ИПБ с током 1 А для сетевого трансформатора достаточно 5 витков при сечении провода 0,6-0,7 мм.

Простой полярный ИП можно собрать, используя импульсные трансформаторы от компьютерного БП.

Лабораторный блок питания своими руками можно собрать по схеме приведенной ниже.

Данный источник питания собран на микросхеме TL494.

Важно! Для управления Т3 и Т4 используется схема, в которую входит управляющий Тr2. Это связано с тем, что встроенные ключевые элементы микросхемы не имеют достаточной мощности.

Трансформатор Тr1 (управляющий) берут от компьютерного БП, он «раскачивается» при помощи транзисторов Т1 и Т2.

Особенности сборки схемы:

  • для минимизации потерь при выпрямлении используют диоды Шоттки;
  • ESR электролитов в фильтрах на выходе должен быть как можно ниже;
  • дроссель L6 от старых БП применяют без изменения обмоток;
  • дроссель L5 перематывают, намотав на ферритовое кольцо медный провод диаметром 1,5 мм, набрав 50 витков;
  • Т3, Т4 и D15 крепят на радиаторы, предварительно отформатировав выводы;
  • для питания микросхемы, управления током и напряжением применяют отдельную схему на Tr3 BV EI 382 1189.

Вторичная обмотка выдает 12 В, которые выпрямляются и сглаживаются при помощи конденсатора. Микросхема линейного стабилизатора 7805 стабилизирует его до 5 В для питания схемы индикации.

Читайте также  Дед Мороз крючком

Внимание! Допустимо использовать в этом БП любую схему вольтамперметра. В таком случае микросхема для стабилизации 5 В не понадобится.

Изготовление печатной платы и сборка

Схема подразумевает изготовление трёх печатных плат. Платы подбираются для корпуса Kradex Z4A.

Платы выполнены из фольгированного гетинакса путем фотопечати и протравки дорожек.

Настройка блока питания

Правильно собранное устройство не нуждается в особой регулировке. Необходимо лишь подстроить диапазоны регулировки тока и напряжения.

Четыре операционных усилителя в микросхеме LM324 осуществляют регулировку тока и напряжения. Микросхема питается через фильтр, собранный на L1, C1 и С2.

Чтобы настроить схему регулировки, нужно подобрать элементы, помеченные звёздочкой, для маркировки регулирующих диапазонов.

Индикация

Для индикации обычно используются устройства индикации и модуль измерения на микроконтроллерах. Питание таких контроллеров лежит в пределах 3-5 В.

Рекомендации по улучшению надежности

Лабораторный бп должен простоять под нагрузкой не менее 2 часов. После этого проверяют температуру корпусов трансформаторов, работу теплоотводов. При намотке трансформаторов для снижения шума при работе намотку обмоток осуществляют плотно виток к витку. Готовую конструкцию заливают парафином. При установке элементов на радиаторы места контактов промазывают теплопроводящей пастой.

В корпусе просверливают ряд отверстий, напротив теплоотводов, сверху дополнительно устанавливают кулер.

Защита блока питания

Токовая стабилизация (защита) микросхемы LM324 срабатывает при превышении установленного токового порога. В этом случае на микросхему приходит сигнал о понижении напряжения. Красный светодиод служит индикатором повышения напряжения или возникновения короткого замыкания. В рабочем режиме светится зеленый светодиод.

Советы по оформлению корпуса

Корпус Kradex Z4A позволяет выводить элементы управления и индикации, как на лицевую, так и на боковые панели. Ручки регулировки, индикатор лучше всего устанавливать на лицевую панель. Разъем для выходного напряжения можно крепить где угодно.

Собранный своими руками лабораторный блок питания с использованием мощных полевых транзисторов и импульсных трансформаторов незаменим для работы. В качестве индикаторов желательно использовать цифровые электронные ампервольтметры.

Видео

Лабораторный блок питания своими руками 1,3-30В 0-5А

Лабораторный блок питания своими руками

Собирая лабораторный блок питания своими руками, многие сталкиваются с проблемой выбора схемы. Импульсные блоки питания при наладке самодельных передатчиков или приемников могут давать нежелательные помехи в эфир, а линейные блоки питания зачастую не в силах развивать большую мощность. Почти универсальным блоком может стать простой линейный блок питания 1,3 – 30В и током 0 – 5А, который будет работать в режиме стабилизации тока и напряжения. При желании им можно будет, как зарядить аккумулятор, так и запитать чувствительную схему.

В сети гуляет интересная схема, которая обсуждалась на множестве форумов, отзывы по ней были ну совсем неоднозначные. Ниже приводим оригинал этой схемы, и вкратце расскажем, откуда она взята. На основе ее мы сделаем лабораторный блок питания своими руками.

Это почти классика. Блок питания реализован на стабилизаторе напряжения LM317, который может регулировать напряжение в пределах 1,3 – 37В. Работая в паре с мощным транзистором КТ818, схема способна протянуть через себя уже значительный ток. Ограничитель и стабилизатор тока, так называемая защита лабораторного блока питания, организована на LM301.

Если обратиться к первоисточникам, можно увидеть, что основа схемы описывалась в разных книгах, например Г. Шрайбер «300 схем источников питания» стр. 39.

простой лабораторный блок питания

А также упоминалась в книге П. Хоровиц «Искусство схемотехники» том 1, стр. 358.

простой лабораторный блок питания

Новичкам, собирающий первый блок питания, рекомендуем ознакомиться с вышеупомянутой литературой, там есть, что для себя почерпнуть.

Как видим, основа особо не поменялась, схема обросла парой фильтрующих конденсаторов, диодными мостами и весьма странным способом включения измерительной головки. Также применяется транзистор КТ818, который значительно уступает по мощности MJ4502 или MJ2955.

Лабораторный блок питания своими руками 1,3-30В 0-5А

Немножко подумав, мы сделали свою интерпретацию данного блока питания. Повысили емкость входных конденсаторов, убрали элементы измерительной головки и добавили парочку защитных диодов. Применения в этой схеме КТ818 было абсолютно неоправданно, он безбожно грелся и безвозвратно издох, пока его не заменили парой недорогих транзисторов TIP36C, которые включили параллельно.

Настройку блока питания необходимо проводить в несколько этапов:

Первое включение производится без LM301 и транзисторов. Регулятором Р3 проверяем, как регулируется напряжение. За регулировку напряжения отвечают LM317, Р3, R4 и R6, С9.

Если регулировка напряжения производиться нормально, тогда к схеме подключаем транзисторы. Пару транзисторов покупать лучше с одной партии, с максимально близким hFE. Для нормальной работы параллельно включенных транзисторов, в цепи эмиттера должны находиться балансировочные резисторы R7 и R8. Номинал R7 и R8 необходимо подбирать, сопротивление должно быть максимально низким, но достаточным, что бы ток проходящий через Т1 был равен току проходящим через Т2. На данном этапе к выходу БП можно подключать нагрузку, но ни в коем случае не стоит устраивать КЗ – транзисторы моментально выйдут из строя, забрав с собой и LM317.

Следующим этапом станет установка LM301. Важно убедиться, что на 4-й ножке операционного усилителя присутствует -6 В. Если там +6 В, то необходимо внимательно осмотреть, как у Вас включен диодный мост BR2 и правильно ли подключен конденсатор С2. Питание LM301 (7я ножка) МОЖНО брать с выхода БП.

Вся дальнейшая настройка сводиться к подгону Р1 под максимальный рабочий ток блока питания. Как видим, настроить лабораторный блок питания своими руками будет совсем не трудно, главное не допустить ошибки при монтаже.

Используемые нами основные компоненты:

  • Трансформатор ТПП 306-127/220-50. Позволяет выжать с каждой 20 вольтовой обмотки по 2,56 А, включив их параллельно получим 5,12 А. Остальные обмотки идут на питание операционного усилителя, вентилятора и цифрового вольтамперметра;
  • Стабилизатор — LM317К;
  • Транзисторы — TIP36C;
  • Операционный усилитель — LM301AN;
  • Конденсаторы электролитические – номинал см. схему, максимальным напряжением до 50В;
  • Диоды BR2 – 1N1007;
  • Диоды BR1 — MBR20100CT;
  • Резисторы R1 – 33 Ом, 2Вт;
  • Резисторы R5, R7, R8 – 0,1 Ом, 5Вт;
  • Остальные резисторы мощностью — 0,25Вт;
  • Резисторы Р1 – многооборотный подстроечный 470 кОм;
  • Предохранитель F2 – самовосстанавливающейся предохранитель от Littelfuse на 7А/30В.

Лабораторный блок питания 30в 5а, результат

Плата управления собранная на макетке.

Лабораторный блок питания своими руками

Плата основного диодного моста.

Лабораторный блок питания своими руками

Транзисторы установлены на радиатор от Cooler Master CMDK8, этот боксовый куллер способен рассеивать мощность до 95 Вт.

Лабораторный блок питания своими руками

Внутри блока расположен 80мм дополнительный вентилятор, охлаждающий диодный мост и трансформатор, а также обдувающий радиатор транзисторов с тыльной стороны.

Лабораторный блок питания своими руками

Лабораторный блок питания своими руками

Все это добро засунуто в добротный радиолюбительский корпус, оставшийся со времен СССР. Вот таким вышел у нас лабораторный блок питания своими руками.

Лабораторный блок питания своими руками

Лабораторный блок питания своими руками

Подключение цифрового вольтамперметра избавило нас от измерительных стрелочных приборов.

Лабораторный блок питания своими руками

Демонстрация работы:

В работе с максимальным током в 5 А транзисторы остаются теплыми благодаря хорошей системе охлаждения, температура основного диодного моста также в норме, т.к. там используются мощные диоды Шоттки и вентилятор, который охлаждает этот мост и трансформатор. При полной нагрузке все таки происходит небольшой нагрев трансформатора. Вес блока составил порядка 4 кг.

Уже изготовив данный блок, пришла идея, как можно немного переделать схему и получить этот лабораторный блок питания с нуля вольт. Но это уже будет другая история…

Работы наших читателей

Ниже будем добавлять работы наших читателей, присылайте в комментах фото своих лабораторных блоков питания собранные по этой схеме, будем добавлять в статью, так станет интересней.

    Лабораторный блок питания своими руками прислал Алексей. Это его первая электронная подделка, пока не оформлен в корпус. Трансформатор: ТПП-312. Транзисторы: пара TIP36C. На выходе: ток до 7А.

Лабораторный блок питания своими руками

Лабораторный блок питания своими руками

Корпус подошел от распределительной коробки, размер лабораторного БП 24х19х9,5 см, вес 4,5 кг. По затратам на все ушло около 900 рублей.

Читайте также  Дворники с подогревом

Лабораторный блок питания выдает напряжение 1.3… 25 вольт, максимальное честное напряжение 19,5 при нагрузке 5 ампер, это почти, то напряжение, которое выдает трансформатор до диодного моста и конденсаторов.

Блок питания своими руками: пошаговая инструкция как делается самодельная, регулируемая, универсальная и импульсная модель

Блоки питания постоянного тока нужны не только радиолюбителям. Они имеют очень широкую сферу применения, и поэтому ими в той или иной степени пользуется большинство домашних мастеров. В этой статье описаны основные типы преобразователей напряжения, их характерные отличия и области применения и то, как сделать простой блок питания своими руками.

Самостоятельное изготовление позволит получить экономию немалых денежных средств. Разобравшись с устройством и принципом работы можно легко выполнить ремонт этого устройства.

Краткое содержимое статьи:

Области применения

Эти устройства имеют очень широкую сферу применения. Давайте рассмотрим основные способы использования. Для экономии ресурса аккумуляторных батарей к самодельным блокам питания подключают низковольтный электроинструмент. Такие приборы используются для подключения светодиодных осветительных приборов, установке освещения в помещениях с высокой влажностью и опасностью поражения электрическим током и для многих других целей, не имеющих прямого отношения к радиоэлектронике.

Классификация устройств

Большинство блоков питания преобразуют сетевое переменное напряжение величиной 220 вольт в постоянное напряжение заданной величины. При этом устройства характеризуется большим перечнем рабочих параметров, которые необходимо учитывать при покупке или конструировании.

Основными рабочими параметрами является выходной ток, напряжение и возможность стабилизации и регулировки выходного напряжения. Все эти преобразователи по способу преобразования классифицируются на две большие группы: аналоговые и импульсные приборы. Эти группы блоков питания имеют сильные отличия и легко различаются по фото с первого взгляда.

Ранее выпускались только аналоговые приборы. В них преобразование напряжения осуществляется с помощью трансформатора. Собрать такой источник не составляет труда. Его схема достаточна проста. Он состоит из понижающего трансформатора, диодного моста и стабилизирующего конденсатора.

Диоды преобразуют переменное напряжение в постоянное напряжение. Конденсатор дополнительно его сглаживает. Недостатком таких приборов являются большие габариты и масса.

Трансформатор мощностью 250 Ватт обладает массой несколько килограмм. Кроме того на выходе таких устройств напряжение может меняться от внешних факторов. Поэтому для стабилизации выходных параметров в таких аппаратах в электронную схему добавляются специальные элементы.

С использованием трансформаторов изготавливаются блоки питания повышенной мощности. Такие приборы целесообразно использовать для зарядки автомобильных аккумуляторов или для подключения электрических дрелей для экономии ресурса литиевых аккумуляторов.

Преимуществом такого устройства является гальваническая развязка между двумя обмотками (за исключением автотрансформаторов). Первичная обмотка, подключенная в сеть высокого напряжения, не имеет физического контакта с вторичной обмоткой. На ней генерируется пониженное напряжение.

Передача энергии осуществляется с помощью магнитного поля переменного тока в металлическом сердечнике трансформатора. При наличии минимальных знаний в радиоэлектронике своими руками легче собрать классический регулируемый блок питания с использованием трансформатора.

С развитием электронной техники стало возможным выпускать более дешевые полупроводниковые преобразователи напряжения. Они очень компактны, мало весят и обладают очень низкой ценой. Благодаря этому они стали лидерами рынка. В любой квартире используются несколько разных блоков питания.

К сожалению, в большинстве современных приборов отсутствует гальваническая развязка с питающей сетью. Из-за этого довольно часто гибнут люди, которые при зарядке сотового телефона или другой техники пользуются прибором и одновременно принимают ванну или умываются.

При соблюдении техники безопасности человеку ничего не грозит. Эти приборы обладают достаточно низкой стоимостью и при их поломке зачастую их не пытаются отремонтировать, а приобретают новое устройство. Тем не менее если разобраться со схемами и принципами работы импульсных блоков питания, то легко можно будет, как отремонтировать такой блок питания, так и собрать новый прибор.

Импульсные блоки питания

Давайте разберемся с устройством и принципом работы импульсных источников питания. В таких приборах на входе переменное сетевое напряжение преобразуется в высокочастотное напряжение. Для трансформации токов высокой частоты требуются не большие трансформаторы, а миниатюрные электромагнитные катушки. Поэтому такие преобразователи легко умещаются в маленьких корпусах. Например, они легко размещаются в пластиковом патроне энергосберегающей лампы.

Компоновка такого блока питания в приборе небольшого размера не вызывает никаких проблем. Для надежной работы необходимо предусмотреть возможность охлаждения на специальных металлических радиаторах нагревающихся элементов электронной схемы. Преобразованное напряжение выпрямляется с помощью быстродействующих диодов и сглаживается на выходном фильтре.

Недостатком таких приборов является неизбежное наличие высокочастотных помех на выходе преобразователя, несмотря даже на наличие специальных фильтров. Кроме того, в импульсных приборах используются специальные схемы стабилизации выходного напряжения.

Импульсный блок питания можно приобрести в виде отдельного блока, готового к монтажу в приборе. Также это устройство можно собрать самостоятельно, воспользовавшись широко распространенными схемами и инструкциями по сборке блоков питания.

При этом следует учесть, что самостоятельная сборка может обойтись дороже покупного изделия, приобретенного в интернете на азиатском рынке. Это может быть вызвано тем, что радиоэлектронные компоненты продаются с большей наценкой, чем наценка производителя в Китае на сборку изделия и его доставку. В любом случае, разобравшись с устройством таких приборов, можно будет не только собрать такой прибор самостоятельно, но и при необходимости отремонтировать. Такие навыки будут очень полезными.

При желании сэкономить, можно воспользоваться импульсными блоками питания от персональных компьютеров. Зачастую в вышедшем из строя персональном компьютере находится исправный блок. Они требуют минимальной доработки перед использованием.

Такие блоки питания имеют защиту от холостого хода. Они должны всё время находиться под нагрузкой. Поэтому для того, что бы избежать отключения в нагрузку включают постоянное сопротивление. Такие модернизированные блоки применяют в первую очередь для питания бытового электроинструмента.

Лабораторный блок питания с регулировкой напряжения и тока

Лабораторный блок питания

просьба собирать её по печатной плате, которую я для вас сделал, чтобы избежать всевозможных ошибок при монтаже.

Печатная плата для схемы

Основа схемы была взята из зарубежного журнала, только я увеличил немного мощности, более детально протестировал её, в итоге от себя добавил дополнительный силовой транзистор, ну и сама плата естественно была модернизирована. Получился отличный блок питания с хорошей нагрузочной способностью, а стабилизация осталась на достаточно высоком уровне.

Лабораторный блок питания с регулировкой напряжения и тока

Основной недостаток линейных схем заключается в их малом КПД, а при конструировании таких источников питания возникают проблемы с охлаждением силовых транзисторов, поэтому очень желательно использовать трансформатор с несколькими обмотками и систему коммутации.

Наиболее простейший вариант показан на фото.

Схема система коммутации.

Стоит указать то, что сейчас многие отдают предпочтение импульсным лабораторным источником питания у которых кпд может доходить до 90 и более процентов, но больше ценится именно линейные источники питания. Профессиональные линейные блоки питания всегда дополняют узлом коммутации обмоток.

Блок питания может обеспечить на выходе стабильное напряжение от 0 до 35-38 вольт, а выходной ток может доходить до 5-6 ампер.

Измерение нагрузки.

Кстати ток также стабилизирован, то есть выставленное значение тока будет сохраняться при изменениях входного и выходного напряжения, и не зависит от выходной нагрузки.

Выставили ток в 1 ампер и даже при коротком замыкании у вас он будет ограничен одним амперам.

Измерение в 1 ампер.

А вот собственно и модернизированная схема.

Лабораторный блок питания с регулировкой напряжения и тока, схема

Я снизил сопротивление датчика тока до 0,1 оМа,

добавил второй силовой транзистор параллельно первому,

но в эмиттерных цепях каждого транзистора стоит токо-выравнивающий или балластный резистор.

Силовые транзисторы можно любые соответствующей мощности, ток коллектора транзистора желательно 10 ампер и выше, при этом мощность рассеивания должна быть 100 и более ватт.

Так как данная схема — линейная, я очень советую использовать транзисторы в металлических корпусах, на крайняк транзисторы в корпусе ТО247, чтобы не возникли проблемы с теплоотдачей.

Транзисторы в железных корпусах.

В схеме имеем три мощных резистора, балластные советую взять на 5 ватт, а вот датчик тока и на 10 ватт не помешает.

Читайте также  Декоративный фальш-камин из картона

Балластные резисторы советую взять сопротивлением 0,22 Ома у меня они к сожалению закончились, поэтому поставил на 0,1 Ом, но если транзисторы имеют максимально идентичные параметры, то такое решение даже лучше.

В моём случае, в качестве силовых транзисторов изначально использовал ключи 2SD209 по сути это аналог ключей MJE13009, оба варианта очень часто применяются в компьютерных блоках питания.

Каждый такой транзистор может рассеивать 100-130 ватт мощности, но лишь в том случае, если имеется хорошее охлаждение и вы уверены в подлинности транзисторов, но их основная проблема слишком низкий коэффициент усиления по току, всего около 20.

Аналогичное ключи ставить я крайне не рекомендую по нескольким причинам. Во-первых регулировка будет нелинейной из за малого усиления ключей, по этой же причине управлять такими транзисторами тяжело, поэтому драйверный ключик будет жестко нагреваться и ему будет нужен небольшой радиатор.

Очень советую транзисторы в металлических корпусах, наподобие 2N3055, для таких схем они идеально подходят. Металлический корпус, приличная мощность и ток коллектора, а коэффициент усиления по току около 200, как раз то, что нужно.

Я в итоге поставил ключи 2SD1047, они обладают приличным усилением, применяются как в источниках питания, так и в выходных каскадах усилителей мощности низкой частоты.

Радиатор для ключей удобно использовать общий, притом изолировать ключи прокладками не нужно, так как подложки или коллекторы в нашей схеме общие.

Лабораторный блок питания с регулировкой напряжения и тока

После подачи питания на схему стабилизатора нужно путём вращения данного, подстроечного резистора выставить максимальный выходной ток,

допустим 5 ампер, далее выставляем максимальное напряжение на выходе, тут всё зависит от того, какой у вас источник питания, какой у него ток и напряжение на выходе, то есть данный стабилизатор без проблем можно скорректировать под любой источник питания.

Введите электронную почту и получайте письма с новыми поделками.

Теперь подаем питание на вход стабилизатора и проверяем минимальное, выходное напряжение — оно как видим 0 вольт, что и требовалось доказать, регулировка очень плавная во всём диапазоне.

Лабораторный блок питания с регулировкой напряжения и тока

Теперь проверим ток, минимальный выходной ток можно скинуть вплоть до 0, а максимальных 5 ампер схема выдают без проблем.

Один из самых важных тестов — насколько просядет выходное напряжение при определенных токах, ну давайте посмотрим, но перед этим важно указать, что на проводах, измерительном шунте амперметра и на самом стабилизаторе, а также на токо-выравнивающих резисторах будут падения напряжения, то есть на указанных участках будут просадки, это в случае любого источника питания.

Ток 1 ампер, просадка около 0,1 вольта,

ток 3 ампера просадка всего 0,4 вольта

и наконец максимальный ток 5 ампер, просадка 0,65 вольт, без измерительного оборудования эти цифры были бы гораздо меньше.

Лабораторный блок питания с регулировкой напряжения и тока

Проверим стабильность выходного напряжения при резких изменениях входного, ну например перепады в сети.

Как видим стабилизатор держится молодцом, при изменении входного напряжения на 10 вольт выходное изменяется лишь на 50-70 милливольт.

А теперь пульсации на выходе, при итоге в 1 ампер пульсации не более 20 милливольт, при токе в 3 ампера — около 25-30 милливольт,

Лабораторный блок питания с регулировкой напряжения и тока

а при максимальном токе в 5 ампер, пульсации на выходе около 50-60 милливольт, согласитесь это неплохой показатель для блока питания такого уровня.

Переделываем блок питания в картинках

Доброе время суток обитателю хабрахабра!
Довело меня увлечение электроникой до момента, когда дешевого китайского паяльника стало мало. Было принято волевое решение собрать паяльную станцию своими руками. Но вот беда, оказалось что в городе достать трансформатор на 24 вольта просто невозможно. Благодаря этому прискорбному факту и родилась статья.

В закромах нашлись несколько старых блоков питания ATX, и начался долгий и тернистый путь к получению заветных 24 вольт.

Как известно у ATX есть линия, выдающая -12 вольт с силой тока около 0,5 ампер, так почему бы её не усилить? Но первый блин, как известно, комом: при попытке запитать чудо паяльник блок питания сделал «БЗЗЗ» и ушел на покой.

Второй попыткой было решено сделать удвоитель напряжения. Но удвоителю на вход нужен переменный ток, который можно взять от трансформатора. Но, как оказалось, и этот путь не привел к успеху…
Продолжение истории под катом (осторожно: много картинок)

Из вооружения был только дешевый мультиметр, который показал, что на трансформаторе около 10 вольт переменного тока. Ну чтож, можно идти в бой! На макетке был собран удвоитель. К сожалению, его фотография сохранилась только одна, так сказать, в боевом режиме

Какого же было удивление, когда мультиметр показал на выходе все 50 вольт! Опровержением постулатов физики заниматься не захотелось, поэтому была приобретена тяжелая артиллерия в виде осциллографа. Картинка на выводах трансформатора получилась следующая

Это с пред делителем 1:10 на щупе и цена деления в 1 вольт. Оказывается трансформатор и выдает заветные 24 вольта, только очень страшной формы (не удивительно, что китайский мультиметр не справился с задачей).

Новая задача — переделать удвоитель в выпрямитель. Заодно было решено перенести всю силовую часть будущей паяльной станции в блок питания. Схема получилась вот такая

Пояснение по схеме:
Диоды D2, D4 (Шоттки 30А 60В) образуют обычный диодный мост, на вход которого приходит 24 вольта ужасной формы, а на выходе — те же 24, но постоянного (стоит заметить, что на выходе ток практически ровный!)
Стабилизатор U1 (7805) понижает напряжение до 5 вольт
Конденсаторы С1 (1000uF, 60V) и С2 (220uF, 16V) — электролиты, выполняющие роль фильтра. В теории перед выходом еще надо поставить керамику, которая бы ловила высокочастотные помехи, но она будет стоять в паяльной станции.

На этом электронная часть закончена, осталось собрать все в корпусе.

Первым делом обрезаем все провода, они должны комфортно поместиться в корпус. Провода собраны в пары, чтобы выдерживать большую нагрузку, концы смотаны и залужены.

После этого, добавляем кнопку запуска блока питания. Для запуска ATX нужно замкнуть PS_ON (зеленый провод) на землю (любой из черных).На выключатель у меня ушло 3 провода — PS_ON, GND и один из +5 (красный провод). Последний нужен для питания светодиода внутри кнопки.

Ах, да, выключатель пришлось немного модифицировать, ибо внутри стояла галогенка, рассчитанная на 220 вольт. Пришлось вытащить потроха и заменить на светодиод () и резистор (511R).

К корпусу одного БП была применена грубая сила и он стал плоским (это будет дно конструкции).

На текущем этапе была собрана и запущена бета-версия вот такого вида

Срезаем все лишнее на корпусе с кулером. Так все выглядит в разобранном состоянии:

На корпусе размещаем 9 гнезд RCA и один молекс (выход для паяльной станции)

Внутри все выглядит ужасающе:

Внешне не многим лучше, но уже не так пугает:

Пришло время проверить как справляется наша «пристройка» со своими обязанностями
5 вольт (цена деления — 2 вольта, осциллограф немножко не откалиброван)

24 вольта (цена деления 1 вольт + пред делитель на щупе 1:10)

Как видно, справляется хорошо! Небольшой стресс тест в виде двухчасового кручения моторчика так же пройден успешно. наконец то можно приступать к созданию паяльной станции…

Уф, кажется все. Спасибо всем, кто осилил до конца. Буду рад критике конструкции (версии 2.0 однозначно быть) и текста.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: