Источник высокого напряжения из ТДКС

Высоковольтная дуга на ТДКС

Разобрал старый цветной телевизор и вытащил оттуда ТДКС(трансформатор диодно-каскадный строчный) TFB4039AD.

тдкс

Где его можно применить? Самое полезное — плазменная зажигалка, но из-за больших габаритов подойдет разве что для опытов. Я повторил опыт, который называется лестница Иакова. Высокое напряжение подводится к двум проводникам расположенным вертикально в форме длинной буквы V. Дуга, нагреваясь начинает подниматься. По мере продвижения дуги вверх расстояние между проводниками увеличивается и в какой-то момент напряжения для поддержания дуги уже не хватает, она прерывается и вновь возникает внизу. Процесс повторяется.

Сначала нужно намотать катушку. Берем 60 см медного провода в лаковой изоляции диаметром 1мм. Сразу зачищаем и облуживаем концы, мотаем 8-10 витков на свободной стороне магнитопровода, зачищаем среднюю точку и делаем отвод, припаяв провод.

катушка тдкс

Теперь нужно собрать генератор колебаний. Самое простое это блокинг-генератор на одном транзисторе или его более мощный двухтактный вариант:

блокинг-генератор

В эти схемы подойдут практически любые мощные биполярные транзисторы. Также можно применять и полевые транзисторы. Ток коллектора или ток стока должны быть больше, чем может дать источник питания. Напряжение коллектор-эмиттер или сток-исток должно быть минимум в двое больше чем напряжение питания. Крайне желательно для защиты полевых транзисторов ставить стабилитроны на 12-18 В. Транзисторы нужно обязательно установить на радиатор — греются прилично.

Я взял транзисторы w13009 и базовые резисторы по 470 Ом. Схема начинает работать от 1.5 В, правда дуга совсем маленькая. Максимум подавал на схему 19В. Дуга больше сантиметра, холодная, бумагу не поджигает. Потребляет 3.5 А, когда транзисторы нагреваются мощность дуги падает. Заменил резисторы на 1 кОм, ток потребления упал до 1.7А, а дуга выросла и транзисторы чуть меньше грелись. Убрал один из транзисторов — ток упал в два раза, а длина дуги осталась прежней.

Другая схема — zvs-драйвер. Транзисторы здесь греются не сильно, а дуга получается жирная и горячая — легко поджигает бумагу и дерево.

zvs-драйвер

Транзисторы должны быть на напряжение в 4 раза выше напряжения питания и c током стока от 10А. Конденсатор C1 пленочный, на напряжение не менее 250В, от его емкости зависит частота колебаний. Стабилитроны ZD1-2 на напряжение 12-18В мощностью 1Вт. Резисторы мощностью 1Вт. Диоды D1-2 быстрые, с током не менее 1А и обратным напряжением не менее 400В.

Есть вариант схемы zvs-драйвера с двумя дросселями, без необходимости отвода от середины первички.

zvs-драйвер схема без отвода от середины

Приведенные схемы потребляют приличный ток, блок питания нужен мощный, хотябы от 5А. Если в нем есть защита от короткого замыкания, она может сработать. Возможно поможет увеличение индуктивности дросселя.

Теперь нужно определить контакты ТДКС между которыми будет дуга. Высоковольтный вывод это самый толстый красный провод идущий к кинескопу. Провода потоньше можно отрезать а тот, у которого изоляция толще припаять к одному из выводов. Обычно это вывод 8 или 6. Сначала подпаиваем провод к выводу 8. На фото он обведен кружком.

выводы ТДКС

Подключаем намотанную на ТДКС катушку к схеме, и подаем питание, для начала вольт 5. С этого момента высоковольтные провода берем только плоскогубцами, даже после выключения питания. Сближаем высоковольтный провод с проводом подпаянным к выводу 8. Если дуги нет, пробуем поднять напряжение, меняем вывод с 8 на 6, проверяем все соединения, исправность транзисторов.

тдкс и zvs-драйвер

Как только дуга получена, можно переходить к опыту лестница Иакова. На каком-нибудь изоляторе наматываем оголенный медный провод в виде буквы V.

лестница иакова

Конструкции нужно придать устойчивое положение проводами вверх, я закрепил изолятор в тисках. Остается подпаять высоковольтные провода и подать питание чтобы увидеть эффект: дуга будет бежать снизу вверх. Может потребоваться немного времени для ее разогрева и выхода на рабочий режим. Если дуга стоит в одном месте, берем плоскогубцы и пробуем увеличить угол между проводами.

Через пару минут начинает сильно вонять или озоном или оксидами азота, а скорее всего их смесью. Газы довольно опасные, лучше открыть окно и не держать дугу более 10 минут или проводить опыты на улице. Дуга также является источником ультрафиолетового излучения, опасного для глаз. Так что долго смотреть на нее не стоит. После отключения питания трансформатор способен хранить заряд достаточно долго, поэтому не забывайте разряжать его закоротив выводы.

  • ШИМ на IR2153 для регулировки яркости
  • Обзор мультиметра Aneng Q1
  • миниатюра постаЗажигалка для газа на тиристоре
  • миниатюра постаФотореле с гистерезисом на tl431

Источник высокого напряжения из ТДКС

Сейчас самое начало мая, а значит, скоро начнутся майские грозы. Думаю, каждый и нас видел это величественное зрелище — молнию — пламенный столб, который с невероятным грохотом прошивает воздух между землёй и небом. Происходит это явление из-за того, что между грозовой тучей и землёй скапливается большая разность потенциалов — настолько большая, что её достаточно для «пробития» всей толщи воздуха между тучей и землёй. При пробитии возникает канал ионизированного воздуха, который мы и видим в виде вспышки в небе. А что, если создать подобие такой молнии на земле? Конечно, она не сравнится по масштабам с настоящей природной молнией, но тоже будет выглядеть очень эффектно. Также на основе устройства, описанного в этой статье, можно будет собрать лестницу Иакова — занимательная конструкция, которая никого не оставит равнодушным.

Относительно недавно буквально в каждом доме стоял пузатый кинескопный телевизор, который по своим размер мог занимать целый угол комнаты. К счастью, сейчас им на смену пришли плоские, более современные телевизоры с совершенно другими технологиями. В этом для радиолюбителей есть особая радость, ведь кинескопные телевизоры сейчас стоят копейки, а найти их можно даже на ближайшей свалке. Мало того, что это кладезь полезных радиодеталей, так ещё и в них содержится ТДКС — трансформатор диодно-конденсаторный строчный. Представляет собой высоковольтный трансформатор, который в телевизоре служит для питания анода кинескопа, на выходе обеспечивает напряжение 20-30 кВ (не с проста на задних крышках телевизоров пишут об опасности высокого напряжения). Перепутать с чем-либо его достаточно трудно, все ТДКС имеют явно выраженный красный высоковольтный провод, исходящий от верха его корпуса.

Можно также купить ТДКС в магазинах радиодеталей, но порой их цена там неоправданно завышена. Также при выпаивании ТДКС с платы телевизора, и вообще их разборке есть важный нюанс — если телевизор недавно включался, то нужно выждать некоторое время (15-20 минут) перед разборкой, чтобы успел полностью зарядится высоковольтный конденсатор на выходе ТДКС, иначе можно получить неприятный удар током. Просто так «голый» ТДКС нельзя подключать к источнику питания, нужно сперва собрать специальную схему, называемую ZVS-драйвер и намотать свою собственную первичную обмотку на ферритовый сердечник ТДКС, но обо всём по порядку. Схема ZVS-драйвера представлена ниже.

Или та же самая схема, но в более наглядном представлении.

Схема основана всего на двух транзисторах, подойдут IRF250, IRF260, либо их аналоги, сходные по параметрам. К затвору каждого из транзисторов подключается по стабилитрону, можно использовать любые на напряжение 12-15В, подойдут, например, BZV85-C15. Также на схеме можно увидеть диоды, подключенные катодами к затворам, нужно использовать ультра-быстрые диоды, например, UF4007. Резисторы 470 Ом стоит взять помощней, в районе 1-2Вт, либо можно составить их из нескольких на 0,25Вт. Также на схеме можно увидеть индуктивность, номинал которой обозначен как 47 — 200 мкГн. Здесь можно использовать либо готовые индуктивности, например, из компьютерных блоков питания, либо самим намотать 30-40 виточков на ферритовый сердечник, итоговая индуктивность не так критична и может менять в больших пределах. Важно, чтобы индуктивность была рассчитана на большой ток, не менее 10 А. Ещё одна примечательная деталь на схеме — конденсатор 0,68 мкФ. Через него может протекать большой ток, поэтому желательно использовать несколько конденсаторов, включенных параллельно, чтобы их общая ёмкость была около 0,68 мкФ. Подойдёт также один, но массивный, на напряжение как минимум 400В. На схеме схематично изображены первичная и вторичная обмотки ТДКС, из этого видно, что первичная обмотка содержит 10-12 витков, с отводом от средины (5+5, либо 6+6). Отвод идёт напрямую через индуктивность к плюсу питания схемы, а крайние концы подключаются к стокам транзисторов.

Читайте также  Как выкрутить слизанный винт

Удобно выбирать такие ТДКСы, у которых между корпусом и ферритовым сердечником есть большой зазор, в этом случае намотать можно даже провод в изоляции. Чем больше будет сечение провода обмотки, тем лучше, можно использовать также и медный провод в лаковой изоляции. Провода от обмотки ТДКС и до платы не должны быть слишком длинными, оптимально 10-15см. Схема питается напряжения 10-40В, при этом длина дуги с выхода ТДКС будет зависеть, в первую очередь, именно от напряжения питания. Ток, потребляемый схемой, зависит от наличия или отсутствия дуги, если высоковольтные электроды разнесены в разные стороны, схема потребляет буквально несколько сотен миллиампер. В режиме горящей дуги между электродами ток значительно возрастает, достигая единиц ампер, чем больше напряжение питания, тем больший ток будет потреблять схема, соответственно больше будет напряжение на выходе ТДКС, жирнее и ярче будет горящая дуга.

Несколько слов о том, как найти минус у ТДКС, или откуда брать дугу. Как известно на выходе ТДКС постоянное напряжение, и если плюс — это яркий толстый высоковольтный провод с присоской, который сразу бросается в глаза, то минус — это один из контактов с основания корпуса ТДКС. Найти его просто — нужно подключить схему к питанию и аккуратно провести оголённым концом провода возле всех остальных выводов, с котором загорится дуга, тот и будет минусом. Чтобы держать высоковольтный провод, можно использовать плоскогубцы с диэлектрическими ручками, все манипуляции проводить строго одной рукой.

Схема ZVS-драйвера собирается на печатной плате, файл для открытия в программе Sprint-Layout прилагается к статье. Плата содержит клеммную колодку для подключения питания, контакты для подключения обмотки ТДКС выведены пятачками, на них запаиваются провода. Процесс сборки не представляет ничего сложного, особенно учитывая, что схема содержит немного деталей. Обратите внимание, что если вы будете использовать индуктивность с другими размерами, то следует подредактировать её посадочное место на плате, а после этого уже печатать рисунок, переводить на текстолит, травить, сверлить, залуживать дорожки, и после этого запаивать детали.

Схема не требует настройки на начинает работать сразу после подачи питания. При первом включении желательно запитать схему от низковольтного источника (10-15В) и убедится в работоспособности схемы. После подачи питания должен быть слышен характерный «шёпот» от высокого напряжения. Если происходят пробои между оголёнными выводами внизу ТДКС, то их нужно залить диэлектрическим компаундом, либо термоклеем, предварительно вывести минусовой контакт на проводе. Транзисторы при работе схемы не должны ощутимо нагреваться, но для спокойствия на них можно установить небольших радиаторы. Если схема запустилась, высокое напряжение присутствует, то можно повышать напряжение питания, подводить минусовой контакт к высоковольтному и наблюдать красивые, зрелищные плазменные дуги, их фотографии представлены ниже. Пробой должен происходить при расстоянии между электродами около 2 см, это примерно соответствует напряжению 20 кВ.



Напряжение на выходе схемы смертельно опасно, поэтому обязательно нужно соблюдать технику безопасности. Также хочу обратить внимание на то, что после отключения питания на выходе ТДКС всё ещё остаётся высокое напряжение, ведь внутри него стоит высоковольтный конденсатор. Поэтому после отключения питания нужно обязательно его разряжать, замыкая между собой высоковольтные выводы, должен быть слышен лёгкий щелчок. При этом во время работы замыкать между собой высоковольтные выводы ни в коем случае нельзя, это можно привести к выходу ТДКС из строя.

Несколько слов о лестнице Иакова — это опасное, но невероятно красивое зрелище теперь запросто может оказаться на вашем столе. Достаточно взять два ровных куска толстой проволоки, длиной около 20 см и расположить их буквой V, но при этом внизу они должны не замыкаться, а быть расположены друг от друга на расстоянии 5-7 мм. Расположить эти электроды нужно на устойчивой диэлектрической подставке. Затем подводим к этим электродам высокое напряжение с выхода ТДКС, дуга будет зажигаться внизу и за счёт своего тепла ползти вверх. Можно поставить снизу электродов свечку, если дуга сама неохотно ползёт. Вверху она разрывается, при этом снова моментально зажигаясь внизу, процесс повторяется. На фотографиях лестница Иакова выглядит по истине восхитительно, будто портал в иной мир (так оно и будет, если коснуться электродов). Удачной сборки!



plata.zip [25.55 Kb] (скачиваний: 92)

Источник высокого напряжения из ТДКС

_________________
Я рожден при социализме, и я этим горжусь!

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

_________________
Я рожден при социализме, и я этим горжусь!

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Компэл 28 октября приглашает всех желающих принять участие в вебинаре, где будет рассмотрена новая и перспективная продукция компании Traco. Мы подробно рассмотрим сильные стороны и преимущества продукции Traco, а также коснемся практических вопросов, связанных с измерением уровня шумов, промывкой изделий после пайки и отдельно разберем, как отличить поддельный ИП Traco от оригинала.

_________________
Я рожден при социализме, и я этим горжусь!

Управление лампами накаливания автомобиля – одна из задач, прекрасно решаемых интеллектуальными ключами PROFET+ производства Infineon. Однако, в силу больших пусковых токов при включении ламп, разработка узлов их коммутации на основе этих ключей требует учета всех особенностей и характеристик как самих ламп, так и системы электропитания конкретной модели автомобиля.

_________________
Я рожден при социализме, и я этим горжусь!

_________________
Я рожден при социализме, и я этим горжусь!

Попробуйте собрать примерно такую схему. Схема рабочая, правда, не с ТДКС испытывалась, а ТВС110ПЦ15+диоды и самодельным, немного более мощным трансформатором + диоды. Схема пока испытана не очень тщательно, нуждается в доработке. Первичная обмотка подключается к клеммам XS2-2 и XS3-2 с соблюдением полярности, естественно. Плюс питания подключаем к XS2-1, минус — к XS3-1. Если ТДКС будет применяться без перемотки первички, то напряжение питания должно быть порядка 100-150 вольт. Если первичку решено перематывать, то намотать надо примерно 30-50 витков и напряжение питания можно сделать примерно вольт 50 (плюс-минус 20 процентов). Мощность источника питания должна быть ватт 150-200. Силовой транзистор лучше всего IGBT на 1200 вольт. Если первичка будет перемотана на 30-50 витков, то можно применить MOSFET IRFP460 или аналогичный. Тогда и защитный диод нужно оставить только один, а не два. Питание слаботочной части нужно производить от источника 15 вольт.
Первый таймер — это задающий генератор с регулируемой в пределах 15-35 килогерц частотой, а второй — одновибратор, генерирующий импульсы длительностью от 8 до 18 мкс. При первом включении частоту надо снизить до предела и длительность тоже уменьшить до 8 мкс.
Вторичную обмотку ТДКС лучше нагрузить цепочкой из двухваттных резисторов килоом на 100 каждый (или около того) числом не менее 20 штук, лучше больше. Это будет и нагрузка, и можно будет использовать её в качестве простейшего делителя. В нижнее плечо делителя нужно вставить резистор килоом на 10, тогда можно будет смотреть напряжение с помощью осциллографа с пробником 1:10. Если нет осциллографа, то можно и мультиметром, только через диод, скажем, HER108 или что-то в этом роде и параллельный клеммам мультиметра плёночный конденсатор в несколько десятых микрофарады и вольт на 160-400.
В принципе, узел на R9-R13, С15, VD8 и VT3 не нужен. Тогда нижний вывод VT7 сажаем на минус питания и ни в коем случае не включаем генератор без нагрузки. Причём, увеличивать частоту и длительность импульса надо очень осторожно, с контролем осциллографом.

Читайте также  Мини-примус из банки от колы

_________________
Я рожден при социализме, и я этим горжусь!

_________________

_________________
Я рожден при социализме, и я этим горжусь!

_________________

_________________
Я рожден при социализме, и я этим горжусь!

_________________

_________________
Я рожден при социализме, и я этим горжусь!

_________________

Точнее не в прямом смысле "на землю", а на корпус, общий провод БП.
Первичная обмотка ТДКС каким напряжением питается?

ПС: не могу найти даташит на ТДКС BH26-00035A.

_________________
Я рожден при социализме, и я этим горжусь!

_________________

_________________
Я рожден при социализме, и я этим горжусь!

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 19

Источник высокого напряжения за 5 минут

Из данной статьи вы узнаете как получить высокое напряжение, с высокой частотой своими руками. Стоимость всей конструкции не превышает 500 руб, при минимуме трудозатрат.

Высокое напряжение

Для изготовления вам понадобится всего 2 вещи: — энергосберегающая лампа (главное, чтобы была рабочая схема балласта) и строчный трансформатор от телевизора, монитора и другой ЭЛТ техники.

Энергосберегающие лампы (правильное название: компактная люминесцентная лампа) уже прочно закрепились в нашем быту, поэтому найти лампу с нерабочей колбой, но с рабочей схемой балласта я думаю не составит труда.
Электронный балласт КЛЛ генерирует высокочастотные импульсы напряжения (обычно 20-120 кГц) которые питают небольшой повышающий трансформатор и т.о. лампа загорается. Современные балласты очень компактны и легко помещаются в цоколе патрона Е27.

Балласт лампы выдает напряжение до 1000 Вольт. Если вместо колбы лампы подключить строчный трансформатор, то можно добиться потрясающих эффектов.

Немного о компактных люминесцентных лампах

Типовая схема компактной люминесцентной лампы

Блоки на схеме:
1 — выпрямитель. В нем переменное напряжение преобразуется в постоянное.
2 — транзисторы, включенные по схеме push-pull (тяни-толкай).
3 — тороидальный трансформатор
4 — резонансная цепь из конденсатора и дросселя для создания высокого напряжения
5 — люминесцентная лампа, которую мы заменим строчником

КЛЛ выпускаются самой различной мощности, размеров, форм-факторов. Чем больше мощность лампы, тем более высокое напряжение нужно приложить к колбе лампы. В данной статье я использовал КЛЛ мощностью 65 Ватт.

Большинство КЛЛ имеют однотипную схемотехнику. И у всех имеется 4 вывода на подключение люминесцентной лампы. Необходимо будет подсоединить выхода балласта к первичной обмотке строчного трансформатора.

Немного о строчных трансформаторах

Строчный трансформатор

Строчники также бывают разных размеров и форм.

Основной проблемой при подключении строчника, является найти 3 необходимых нам вывода из 10-20 обычно присутствующих у них. Один вывод — общий и пара других выводов — первичная обмотка, которая будет цепляться к балласту КЛЛ.
Если сможете найти документацию на строчник, или схему аппаратуры, где он раньше стоял, то ваша задача существенно облегчится.

Внимание! Строчник может содержать остаточное напряжение, так что перед работой с ним, обязательно разрядите его.

Итоговая конструкция

Фото устройства

На фото выше вы можете видеть устройство в работе.

И помните, что это постоянное напряжение. Толстый красный вывод — это «плюс». Если вам нужно переменное напряжение, то нужно убрать диод из строчника, либо найти старый без диода.

Возможные проблемы

Фото КЛЛ

Когда я собрал свою первую схему с получением высокого напряжения, то она сразу же заработала. Тогда я использовал балласт от лампы мощностью 26 Ватт.
Мне сразу же захотелось большего.

Я взял более мощный балласт от КЛЛ и в точности повторил первую схему. Но схема не заработала. Я подумал, что балласт сгорел. Обратно подключил колбы лампы и включил в сеть. Лампа загорелась. Значит дело было не в балласте — он был рабочий.

Немного поразмыслив я сделал вывод, что электроника балласта должны определять нить накала лампы. А я использовал только 2 внешних вывода на колбу лампы, а внутренние оставил «в воздухе». Поэтому я поставил резистор между внешним и внутренним выводом балласта. Включил — схема заработала, но резистор быстро сгорел.

Я решил использовать конденсатор, вместо резистора. Дело в том, что конденсатор пропускает только переменный ток, а резистор и переменный и постоянный. Также, конденсатор не нагревался, т.к. давал небольшое сопротивление на пути переменного тока.

Конденсатор работал великолепно! Дуга получилась очень большой и толстой!

Итак если у вас не заработала схема, то скорее всего 2 причины:
1. Что-то не так подключили, либо на стороне балласта, либо на стороне строчного трансформатора.
2. Электроника балласта завязана на работе с нитью накала, а т.к. ее нет, то заменить ее поможет конденсатор.

Используйте конденсатор на соответствующее напряжение! У меня был на 400 Вольт, взятый из балласта другой энергосберегающей лампы.

При проведении опытов с высоким напряжением будьте предельно осторожны! Высокое напряжение опасно для жизни!

Лампа мощностью 65 Ватт, обеспечивает ток порядка 65 мА (65Ватт/1000В). А сила тока более чем 50 мА, смертельна опасна для жизни и вызывает остановку сердца!

Генератор высокого напряжения из строчника на транзисторе

Здравствуйте, уважаемые друзья! Сегодня я предлагаю вам собрать генератор высокого напряжения всего на одном транзисторе из строчного трансформатора ТВС-110ПЦ15 с умножителем напряжения УН9/57-13 от старого цветного телевизора. Схема довольно простая, построена по принципу блокинг генератора и содержит небольшое количество деталей.

Схема генератора высокого напряжения из строчника на одном транзисторе

Схема генератора высокого напряжения из строчника на одном транзисторе

Для сборки генератора вам понадобится один транзистор КТ819Г, или импортный аналог TIP41C, но лучше всего использовать MJE13009, поскольку этот транзистор выдерживает ток до 12 А и соответственно будет меньше греться. Лично я в своем генераторе использовал MJE13009. Транзистор обязательно намажьте термопастой и установите на радиатор, желательно с вентилятором.

Еще вам понадобится два резистора мощностью по 5 ватт. На 100 ом и 240 ом, в моем генераторе резисторы очень сильно грелись и я решил приклеить «поксиполом» небольшой радиатор. Самой важной деталью генератора является строчный трансформатор ТВС-110ПЦ15, возможно использовать ТВС-90ЛЦ5 и другие аналогичные от старых цветных, черно белых и даже ламповых телевизоров.

Строчный трансформатор ТВС-110ПЦ15

Строчный трансформатор ТВС-110ПЦ15

На магнитопроводе трансформатора надо намотать пару дополнительных обмоток. Катушка L1 содержит 10 витков, намотанных проводом диаметром 1 миллиметр. Катушку L2 мотаем проводом 1,5 миллиметра, всего 4 витка. Обе катушки должны быть намотаны в одну сторону. Вторичная высоковольтная обмотка остается без изменения.

Строчный трансформатор ТВС-110ПЦ15 с двумя дополнительными обмотками

Строчный трансформатор ТВС-110ПЦ15 с двумя дополнительными обмотками

Умножитель напряжения УН9/27-13 или аналогичный тоже нуждается в незначительной доработке. На нем надо удалить два неиспользуемых вывода, отмеченных на картинке красными стрелками, потом изолировать эти места «поксиполом». Делать это необязательно, но если вы случайно во время эксперимента коснетесь этих выводов… Волосы встанут дыбом и мало не покажется, конечно током не убьет, там очень мало ампер, но обжечь может. Между строчным трансформатором и умножителем устанавливается резистор на 470 ом.

Умножитель напряжения УН9/27-13

Умножитель напряжения УН9/27-13

Разрядник сделан из двух проволок диаметром 1 миллиметр. Расстояние между электродами подбирается индивидуально. Для питания генератора лучше всего использовать источник питания от 12 до 30 вольт с силой тока не менее 2А.

Читайте также  Невидимка с Белокрыльником

Генератор высокого напряжения. Разрядник

Генератор высокого напряжения. Разрядник

После подачи питания на разряднике появляется мощная дуга. Как измерить напряжение на выходе из умножителя без киловольт метра? Принято считать, 1 миллиметр дуги за 1 киловольт, длина дуги 15 миллиметров, значит напряжение на разряднике примерно 15 киловольт.

Хочу сказать пару слов о технике безопасности. На разрядник из умножителя подается высокое напряжение несколько десятков киловольт, поэтому не прикасайтесь руками к разряднику во избежание поражения электрическим током, даже после отключения питания в конденсаторах умножителя остается высокое напряжение. Конечно током не убьет, потому что мало ампер, но ударит больно и возможно оставит ожоги на коже.

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как работает генератор высокого напряжения.

Источник высокого напряжения, автогенератор

Коронный разряд

Собрать генератор высокого напряжения в домашних условиях несложно, в этой статье рассмотрим простую автогенераторную схему, отличительными особенностями которой является простота и большая выходная мощность.

Автогенератор представляет собой самовозбуждающуюся систему с обратной связью, которая в свою очередь обеспечивает поддержание колебаний. В такой системе частота и форма колебаний определяются свойствами самой системы, а не задаются внешними параметрами.

Схема устройства представлена ниже:
Двухтактный автогенератор, схема
Внешний вида автогенератораУстройство представляет собой двухтактный автогенераторный преобразователь. Полевые транзисторы VT1, VT2 включаются поочередно, например, если включен транзистор VT1, напряжение на его стоке уменьшается, открывается диод VD4, тем самым напряжение на затворе транзистора VT2 уменьшается, не давая ему открыться. Защитные диоды VD2, VD3 предохраняют затворы транзисторов от перенапряжения. Форма импульсов на трансформаторе T1 близка к синусоидальной.

Строчный трансформаторОсновным элементом схемы является высоковольтный трансформатор T1. Лучше всего подходят строчные трансформаторы (ТВС) от ламповых черно-белых телевизоров советского производства. Магнитопровод у таких трансформаторов ферритовый, состоит из двух П-образных частей. Высоковольтная вторичная обмотка выполнена в виде цельной пластмассовой катушки, как правило, расположена отдельно от блока первичных обмоток. Я использовал магнитопровод от строчного трансформатора марки ТВС-110Л4 (магнитная проницаемость 3000НМ), высоковольтную обмотку снял от трансформатора ТВС-110ЛА. Родную первичную обмотку необходимо демонтировать, и намотать новую, из эмалированного медного провода диаметром 2мм, всего 12 витков с отводом от середины (6+6). Во время сборки между П-образными частями магнитопровода, в месте стыка, необходимо проложить картонные прокладки, толщиной примерно в 0,5мм, для уменьшения насыщения магнитопровода.

ДроссельДроссель L1 намотан на феритовом Ш-образном магнитопроводе, 40-60 витков эмалированного медного провода диаметром 1,5мм, между стыками магнитопровода проложена прокладка толщиной 0,5мм. В качестве сердечника можно использовать ферритовые кольца или П-образную часть магнитопровода строчного трансформатора.

Конденсаторы K78-2Конденсатор C3 состоит из 6-ти параллельно соединенных конденсаторов марки К78-2 0,1мк х 1000В, они хорошо подходят для работы в высокочастотных контурах. Резисторы R1,R2 лучше ставить мощностью не менее 2Вт. Высокочастотные диоды VD4, VD5 можно заменить на HER202, HER303 (FR202,303).

Трансформатор ОСМ-1

Для питания устройства подойдет нестабилизированный блок питания с напряжением 24-36В, и мощностью 400-600Вт. Я использую трансформатор ОСМ-1 (габаритная мощность 1кВт) с перемотанной вторичной обмоткой на 36В.

Электрическая дуга зажигается с расстояния 2-3мм между выводами высоковольтной обмотки, что примерно соответствует напряжению 6-9кВ. Дуга получается горячей, толстой и тянется до 10см. Чем длиннее дуга, тем больше потребляемый ток от источника питания. В моем случае максимальный ток достигал значения 12-13А при напряжении питания 36В. Чтобы получить такие результаты, нужен мощный источник питания, в данном случае это имеет основное значение.

Лестница "Иакова"Для наглядности я сделал лестницу “Иакова” из двух толстых медных проводов, в нижней части расстояние между проводниками составляет 2мм, это необходимо для возникновения электрического пробоя, выше проводники расходятся, получается буква “V”, дуга, зажигается внизу, нагревается и поднимается вверх, где обрывается. Я дополнительно установил небольшую свечу под местом максимального сближения проводников, для облегчения возникновения пробоя. Ниже на видеоролике продемонстрирован процесс движения дуги по проводникам.

Коронный разряд на фольге

С помощью устройства можно пронаблюдать коронный разряд, возникающий в сильно неоднородном поле. Для этого я вырезал из фольги буквы и составил фразу Radiolaba, поместив их между двумя стеклянными пластинами, дополнительно проложил тонкий медный провод для электрического контакта всех букв. Далее пластины кладутся на лист фольги, который подключён к одному из выводов высоковольтной обмотки, второй вывод подключаем к буквам, в результате вокруг букв возникает голубовато-фиолетовое свечение и появляется сильный запах озона. Срез фольги получается острым, что способствует образованию резко неоднородного поля, в результате возникает коронный разряд.

При поднесении одного из выводов обмотки к энергосберегающей лампе, можно увидеть неравномерное свечение лампы, здесь электрическое поле вокруг вывода вызывает движение электронов в газонаполненной колбе лампы. Электроны в свою очередь бомбардируют атомы и переводят их в возбужденные состояния, при переходе в нормальное состояние происходит излучение света.

Единственным недостатком устройства является насыщение магнитопровода строчного трансформатора и его сильный нагрев. Остальные элементы нагреваются незначительно, даже транзисторы греются слабо, что является важным достоинством, тем не менее, их лучше установить на теплоотвод. Я думаю, даже начинающий радиолюбитель при желании сможет собрать данный автогенератор и устроить эксперименты с высоким напряжением.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: