Лабораторный блок питания

Мощный лабораторный блок питания

Не так давно приобрёл паяльную станцию. Давно занимаюсь любительской электроникой, и вот настал момент когда точно осознал что пора. До этого пользовался батиным самопальным блоком, совмещавшим лабораторный блок питания и блок питания низковольтного паяльника. И вот встала передо мной проблема: паяльную станцию я ставлю, а старый блок держать ради хилого и не точного блока питания 0-30в 3А или таки купить нечто современное, с защитой по току и цифровыми индикаторами? Поползав по ебею понял что максимум что мне светит это за 7-10 тыс купить Китайский блок с током максимум в 5А. Жаба сказала своё веское «ква», руки зачесались и…

Теперь к сути. Сформировал требования к блоку: минимум 0-30В, при токах минимум 10А, с регулируемой защитой по току, и с точностью регулировки по напряжению 0.1В. И что б стало ещё интереснее — 2 канала, пусть и от общей земли. Установка напряжения должна быть цифровой, т.е. никаких переменных резисторов, только энкодеры. Фиксированные установки напряжения и запоминание — опционально.

Для индикации состояния выхода были выбраны цифровые китайские комбинированные индикаторы на ЖК, с диапазоном до 199В с точностью 0.1В и до 20А с точностью 0.01А. Что меня полностью устроило. А вот что забыл, так это прикупить к ним шунты, т.к. по наивности думал что они будут в комплекте.

Для первичного преобразования напряжения думал использовать обычный трансформатор с отводами через каждые 6В, коммутируемый релюшками с контроллера, а для регулировки выхода простой эмиттерный повторитель. И всё бы ничего, но когда узнал стоимость и габариты такого трансформатора (30В * 10А = 300вт), то понял что надо быть современнее и использовать импульсные блоки питания.

Пробежавшись по предложениям понял что ничего толкового на мои токи нет, а если и есть, то жаба категорически против. В связи с этим пришла мысль попробовать использовать компьютерные блоки питания, коих всегда у любого ITшника предостаточно. Были откопаны блоки по 350Вт, что обещало 22А по +5В ветке и 16А по 12В. Пробежавшись по интернету нашёл много противоречивых мнений по поводу последовательного соединения блоков, и нашёл умную статью на Радиокоте как это сделать правильно. Но перед этим решил рискнуть и таки взять и нахрапом соединить блоки последовательно, дав нагрузку.

… И получилось!
На фото последовательно соединены 3 блока. Де-факто на выходе 35В, 10.6А.

image

Далее возник вопрос: каким контроллером управлять. По идее ATMega328 тут идёт за глаза, но ЦАПы… Посчитав почём обойдётся хотя б 2 ЦАПа на 12 бит и посмотрев характеристики Arduino DUE с ними на борту, а так же сравнив кол-во требуемых ПИНов, понял что проще и дешевле и быстрее будет просто поставить эту ардуину в блок целиком, вместе с платой.

Постепенно на макетках родилась схема. Приведу её в общем виде, только для одного канала:

image

Схема бьётся на несколько функциональных блоков: Набор блоков питания ATX, блок коммутации БП, блок усилителя напряжения ЦАП Arduino, блок усилителя напряжения токового шунта, блок ограничения напряжения по заданному току.

Блок коммутации БП: В зависимости от заданного пользователем напряжения Ардуино выбирает какую ветку задействовать. Выбирается минимальная по напряжению ветка, на минимум +3В большая заданного. 3В остаются на неточности установки напряжения в блоках питания +

1.2В просада напряжения на переходах транзистора + не большой запас. Одновременно задействованный ключ ветки активирует тот или иной блок питания. Например задав 24В надо активировать все 3 блока питания и подключить выход на +5в 3-го в цепочке, что даст на коллекторе выходного транзистора VT1 +29В, тем самым минимизируя выделяемую тепловую мощность транзистора.

Блок усилителя напряжения: Реализован на операционном усилителе OP1. ОУ используется Rail-to-Rail, однополярый, с большим напряжением питания, в моём случае — AD823. Причём выход ЦАП Ардуино имеет смещение нулевой точки = 0.54В. Т.е. если Вы задаёте напряжение выхода = 0, на выходе де-факто будет присутствовать 0.54В. Но нас это не устраивает, т.к. ОУ усиливает с 0, и напряжение тоже хочется регулировать с 0. Поэтому применён подстроечный резистор R1, вычитающий напряжение. А отдельный стабилизатор на -5В, вместо использования -5В ветки блока питания, используется ввиду нестабильности выдаваемого блоком питания напряжения, меняющимся под нагрузкой. Выход же ОУ охвачен обратной связью с выхода VT1, это сделано что б ОУ сам компенсировал изменения напряжения в зависимости от нагрузки на выходе.

Кстати, о AD823 из Китая по Ебею: день промучился, понять не мог, почему схема не работает от 0 на входе. Если больше 1.5В то всё становится нормально, а иначе всё напряжение питания. Уже подумав что сам дурак, нарвался на рассказ как человек вместо AD823 получил с Китая подделку. Тут же поехал в соседний магазин, купил там, поставил и… О чудо — всё сразу заработало как надо. Игра, найди отличия (подделка в кроватке, справа оригинал. Забавно что подделка выглядит лучше):

image

Далее усилитель напряжение токового шунта. Поскольку токовый шунт достаточно мощный, то и падение напряжения на нём мало, особенно на малых токах. Поэтому добавлен OP2, служащий для усиления напряжения падения шунта. Причём от быстродействия этого ОУ зависит скорость срабатывания предохранителя.

Сам предохранитель, а точнее блок ограничения тока, реализован на компараторе OP2. Усиленное напряжение, соответствующее протекаемому току, сравнивается с напряжением, установленным электронным потенциометром и если оно выше — компаратором открывается VT2, и тот сбрасывает напряжение на базе выходного транзистора, по сути выключая выход. В работе это выглядит так:

image

Теперь к тому, почему в качестве шунта у меня дроссель. Всё просто: как я писал раньше — я просто забыл заказать шунты. А когда уже собирал блок и это выявилось, то ждать с Китая показалось долго, а в магазине дорого. Поэтому не долго думая, порылся в распайке старых компьютерных блоков питания и нашёл дроссели, почти точно подошедшие по сопротивлению. Чуть подобрал и поставил. Дополнительно же это даёт защиту: В случае резкого изменения нагрузки, дроссель сглаживает ток на время, достаточное что б успел отработать ограничитель тока. Это даёт отличную защиту от КЗ, но есть и минус — импульсные нагрузки «сводят блок с ума». Впрочем, для меня это оказалось не критично.

В итоге у меня получился вот такой блок питания:
image
Надписи на лицевой части сделаны с помощью ЛУТа. Индикаторы работы блоков питания выведены на 2-х цветный светодиод. Где красный запитан от дежурных +5в и показывают что блок готов к работе. А зелёный от Power_Good, и показывает что блок задействован и исправен. В свою очередь транзисторная развязка обеспечивает гашение красного светодиода и если у блока проблема — потухнет и красный и зелёный:

image

Маленькие экраны показывают заданные параметры, большие — состояние выхода де-факто. Энкодерами вращением устанавливается напряжение, короткое нажатие — вкл/выкл нагрузки, длинное — выбор режима установки напряжения/максимального тока. Ток ограничен 12.5А на канал. Реально в сумме 15 снимается. Впрочем — на той же элементной базе, с заменой блоков питания на нечто 500-т Ваттное, можно снимать и по 20. Не знаю, стоит ли приводить тут код скетча, простыня большая и достаточно глупая, + везде торчат хвосты под недоделанный функционал вроде коррекции выходного напряжения по АЦП обратной связи и регулировки скорости вентилятора.

Напоследок, пара слов. Оказалось что Arduino DUE при включении после длительного простоя может не начать выполнять программу. Т.е. включаем плату, думаем что сейчас начнёт выполняться наша программа, а в ответ тишина, пока не нажмёшь reset. И всё бы ничего, но внутри корпуса reset нажимать несколько затруднительно.
Поискал по форуму, несколько человек столкнулось с такой же проблемой, но решения не нашли. Ждут когда разработчики поправят проблему. Мне ждать было лениво, поэтому пришлось решать проблему самому. А решение нашлось до безобразия примитивное, впаять электролитический конденсатор на 22мкФ в параллель кнопке. В результате, на момент запуска, пока идёт заряд этого конденсатора, имитируется нажатие кнопки reset. Отлично работает, прошиваться не мешает:

image

В заключение:
По-хорошему надо повесить на все радиаторы датчики температуры и регулировать скорость вентилятора в зависимости от температуры, но пока меня устроила и платка регулятора скорости вентилятора из какого-то FSPшного блока питания.

Ещё хотелось бы через АЦП обратную связь с блоком коммутации на случай залипания релюшки, а так же обратную связь по выходу, дабы компенсировать температурный дрейф подстроечных резисторов (в пределах 0.1в на больших напряжениях бывают отклонения).

А вот кнопки памяти и фиксированные настройки по опыту использования кажутся чем-то не нужным.

Топ 5 лучших лабораторных блоков питания

Топ 5 лучших лабораторных блоков питания

Приветствую тебя, искатель лучшего лабораторного блока питания для ремонта электроники. На днях я задумался какой бы мне источник постоянного напряжения прикупить для нужд ремонта и поиска неисправностей бытовой техники. Перелопатил кучу информации, соединил со своим опытом и вот так родился этот Топ 5 лучших лабораторных блоков питания для ремонта смартфонов, ноутбуков, мониторов и т.д.

Читайте также  Автоматическая светодиодная подсветка с датчиком движения

Топ 5 лучших лабораторных блоков питания

  • Оптимальное соотношение цена/качество/размер
  • Диапазон регулировки до 30 В и 10 А
  • Защита от короткого замыкания
  • Выбор ремонтников
  • Хорошее соотношение цена/качество
  • Очень маленькие пульсации
  • Большие цифровые индикаторы
  • Большой трансформатор внутри
  • Дополнительный USB-разъем
  • Отображение потребляемой мощности
  • Ручка для переноски
  • Малые пульсации напряжения
  • набор дополнительных разъемов для ноутбуков
  • Корпус с ребрами теплоотвода
  • Двухканальный источник питания
  • Дополнительный выход 5 В 3 А
  • Защита от КЗ, переполюсовки и перенапряжения

Почему лабораторный?

Их так называют, потому что предназначены для эксплуатации в условиях лаборатории. То есть даже на выездной ремонт такие блоки питания брать нежелательно. Не говоря уже об эксплуатации в авто или на улице. Плюс ко всему под словом лабораторный подразумевается некая регулировка параметров и точность установки значений величин тока и напряжения.

К слову, я решил разделить импортные и отечественные источники питания в разные рейтинги по причине разной целевой аудитории. Импортные источники напряжения, применяемые для ремонта в сервисных центрах в основном имеют китайское происхождение и не имеют поверительных документов. Остается надеяться на внутренний контроль производителя. Чаще всего тут встают вопросы удобства эксплуатации и наличие защиты от короткого замыкания.

Отечественные источники тока и напряжения чаще всего имеют сертификаты и периодически поверяются для проведения регулярных измерений в инженерных целях при разработке и эксплуатации оборудования. Это накладывает на стоимость содержания приборов дополнительные расходы. Для таких блоков питания важна погрешность установки значений и надежность работы.

1 место — Long Wei LW-K3010D

По моему это лучший лабораторный блок питания среди оптимальных по соотношению цена/качество/размер. Источник питания сделан в вертикальном форм-факторе и имеет минимум регулировок: кнопка включения и две ручки регулировки напряжения и ограничения тока. Среди импульсных блоков питания можно лучше и не искать.

1 место в рейтинге блок питания

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 50 мВ;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА;
  • Точность установки значений ±0,5 %;
  • КПД равно 85 %;

Кстати, диапазоны изменения напряжения от 0 до 30 В и тока от 0 до 10 А считаются весьма широкими, особенно для такого малютки. Внутренности охлаждаются вентилятором, так что со временем он может загудеть. Но такая система охлаждения установлена на 90 % аналогов.

  • Отсутствует градуировка ограничения по току.
  • Оптимальное соотношение цена/качество/размер;
  • Занимает мало места на рабочем столе;
  • Большой диапазон регулировки напряжения и тока;
  • Большие цифровые индикаторы;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим.

Стоимость источника питания LongWei LW-K3010D составляет около 50 $ , что согласитесь немного при нынешних ценах.

Аналоги:

  1. YiHua PS-1501A по цене около 30 $ (15 В, 1 А, маломощный, для любителей смотреть на стрелки, шумовые пульсации около 1 мВ);
  2. MCH-K305D стоимостью 60 $ (30 В, 5 А, измененный дизайн передней панели и дисплея, контакты только для подключения штекеров);
  3. Wanptek GPS3010D за смешные 70 $ (30 В, 10 А, закругленный корпус и наклонные цифры индикатора);
  4. Wanptek KPS-3010DF по цене 75 $ (30 В, 10 A, имеет дополнительные ручки точной установки напряжения и тока + комплект разъемов для ноутбуков и крокодилы);
  5. МЕГЕОН 303010 за приличные 150 $ в России (30 В, 10 А, полный клон лидера рейтинга с другой наклейкой).

2 место — Yaogong 1502DD

Этот блок питания имеет внутри тяжелый медный трансформатор, который значительно снижает пульсации. Вес при этом 3,5 кг, против 1,5 кг у первого места. За счет качества напряжения и тока источник имеет полное право называться лабораторным.

2 место в рейтинге лабораторных блоков питания

  • Установка напряжения 0 — 15 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 2 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,01 %.
  • Имеет целых 3 ручки регулировки напряжения и 1 ручку регулировки ограничения по току;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Очень маленькие пульсации;
  • Большие цифровые индикаторы;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим.

Стоимость источника питания Yaogong 1502DD всего-то 40 $ . Но внимательно смотрите на доставку таких посылок. Из-за большого веса доставка может стоить немалых денег.

Аналоги:

  1. YIHUA 1502DD всего за 35 $ (15 В, 2 А, очень популярная модель у ремонтников телефонов и смартфонов);
  2. ELEMENT 305D 15305 при стоимости 70 $можно приобрести в России (30 В, 5 А, полный аналог китайских клонов с другой этикеткой);
  3. Hong Sheng Feng PS-305 по цене 70 $ (30 В, 5 A, имеет дополнительные ручки точной установки напряжения и тока);
  4. Korad KD3005D по цене около 100 $ (30 В, 5 А, приятный дизайн, пульсации 10 мВ и 1 мА, смотрите стоимость доставки);
  5. Zhaoxin KXN-3020D стоимостью 120 $ (30 В, 20 А, расширенный диапазон по току, внушительные габариты, удобные ручки);

3 место — Long Wei PS-3010DF

Этот лабораторный блок питания также содержит внутри трансформатор для уменьшения шумов. Дополнительные опции, за которые приходится платить: дисплей для отображения потребляемой мощности и USB-разъем на передней панели.

Long Wei PS-3010DF

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 10 мВ RMS;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА.
  • Повышенная цена по сравнению с предыдущими вариантами;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Малые пульсации;
  • Большие цифровые индикаторы, в том числе потребляемая мощность;
  • Есть защита от короткого замыкания;
  • Дополнительно USB-разъем;
  • Контакты под штекер и под зажим;
  • Ручка для переноски.

Стоимость источника питания Long Wei PS-3010DF около 90 $ .

Аналоги:

  1. KORAD KA3005D по цене 110 $ (30 В, 5 А, пониженные пульсации 10 мВ и 1 мА, есть память предустановок + режим мультиметра);
  2. QJE QJ3005N по цене 80 $ (30 В, 5 A, одна большая ручка для грубой и точной установки напряжения и тока, пульсации 2 мВ и 3 мА);

МЕГЕОН 31305 за нескромные 200 $ в России (30 В, 5 А, полный клон предыдущего источника от KORAD).

4 место — Gophert CPS-3205II (NPS-1601)

Кто-то скажет — почему 4 место? Это же бест-селлер? Ну вот так, не лежит у меня душа к кнопочным блокам питания.

бест селлер блок питания для ремонта

Этот импульсный блок питания конечно не имеет трансформатора внутри. Поэтому имеет не очень удобное в использовании кнопочное управление. Все это сделано в угоду низкой стоимости. Хотя вот корпус очень хорош — с ребрами охлаждения.

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 2 мВ RMS;
  • Установка тока 0 — 5 А;
  • Пульсации по току до 10 мА p-p;
  • Точность установки значений ±0,3 %.
  • Кнопочное управление;
  • Нет отдельного разъема для заземления.
  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Большой набор дополнительных разъемов для ноутбуков;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим;
  • Корпус с ребрами теплоотвода.

Стоимость лабораторного блока питания Gophert CPS-3205II с набором штекеров питания равна 60 $ .

Аналоги:

  1. Gophert CPS-3205 по цене 60 $ (32 В, 5 А, предыдущая модель, разъемы для подключения у нее сзади);
  2. Gophert NPS-1602 за скромные 50 $ (60 В, 3 А, аналог NPS-1601 с расширенным диапазоном напряжений);
  3. Gophert CPS-6017 по цене 180 $ (60 В, 17 A, повышенная мощность, пульсации 30 мВ и 30 мА).

5 место — UNI-T UTP3303

Встречайте серьезный прибор — двухканальный источник питания.

двухканальный источник напряжения UNI-T UTP3303

Такой блок питания удобно использовать при сложном ремонте блоков питания. материнских плат и смартфонов, когда на плату нужно подать два независимых напряжения. Если задействован только один канал, то второй можно нагрузить зарядкой для другого аппарата через набор переходников .

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 3 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,1 %.
  • Большая масса и габариты;
  • Высокая стоимость.
  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Дополнительный выход 5 В 3 А;
  • Есть защита от короткого замыкания, переполюсовки и перенапряжения;
  • Контакты под штекер и под зажим.

Стоимость двухканального лабораторного источника питания UNI-T UTP3303 равна 270 $ .

Аналоги:

  1. Zhaoxin RXN-305D-II имеет стоимость около 180 $ (30 В, 5 А, дополнительный выход 5 В 3 А);
  2. YIHUA 3005D-II по цене 230 $ (30 В, 5 А, популярная модель, уже появились отзывы о покупках);
  3. ATTEN TPR3003T-3C стоит около 250 $ (30 В, 3 А, пульсации 1 мВ и 3 мА);
  4. MCH 305DII по цене 400 $ (30 В, 5 A, дополнительный выход 5 В 2 А);

МЕГЕОН 32303 за волшебные 270 $ в России (30 В, 3 А, полный клон Zhaoxin RXN-305D-II с поправкой на ток).

Отечественные источники питания

Среди признанных народных блоков питания из наследия советского союза можно отметить аналоговый Б5-71/3м. Также мне приходилось использовать цифровые Б5-71мм и Б5-71/1мс по цене около 500 $. Все они находятся в Госреестре средств измерений РФ. У каждого из них есть свои недостатки.

Топ 5 лучших лабораторных блоков питания

Например у Б5-71/3м со временем выходит из строя регулировочный двухосевой потенциометр, который найти можно, но сложно.

Топ 5 лучших лабораторных блоков питания

Импульсные источники питания Б5-71/1мс и Б5-71мм отличаются тем, что от перепадов напряжения питания 220 В могут выставить другое напряжение на выходе, например 50 В. Поэтому для ответственных работ я их не использую.

Применение старых источников питания Made in USSR и самоделок оставляю в стороне. Только помните о технике безопасности при работе с ними.

Возможно, со временем этот рейтинг блоков питания будет добавляться Hi-End источниками от Agilent, Rohde&Schwarz, а также нашими Актаком и китайскими Rigol, Atten, Uni-T, Siglent и т. д.

ПРИМЕНЕНИЕ И УСТРОЙСТВО БЛОКОВ ПИТАНИЯ

Универсальные и лабораторные блоки питания

В общем случае любой блок питания (БП) это прибор, который при подключении к электрической сети формирует необходимые для дальнейшего использования напряжение и ток.

Чаще всего такие устройства преобразуют переменный ток электрической сети общего пользования (

220В, частота 50 Гц.) в постоянный.

  • трансформаторные (линейные);
  • импульсные.
  • стабилизированными;
  • нестабилизированными.
  • понижающий трансформатор с первичной обмоткой, рассчитанной на сетевое напряжение;
  • двухполупериодный выпрямитель, с помощью которого напряжение переменного тока преобразуется в постоянное (пульсирующее);
  • конденсатор большой емкости, сглаживающий пульсации.

В таких блоках питания номинальные значения выходных параметров (напряжение, ток) обеспечиваются только при нормальных значениях входных электрических параметров и тока, потребляемого нагрузкой. Используются они для работы с устройствами, оснащенными собственными стабилизаторами.

В импульсных блоках питания переменное напряжение выпрямляется, а затем преобразуется в высокочастотные импульсы прямоугольной формы и заданной скважности.

Стабилизация в них обеспечивается применением отрицательной обратной связи, которая может быть организована как с помощью гальванической развязки от питающей цепи (трансформатор), так и путем подачи импульсов на фильтр низкой частоты.

В зависимости от колебаний сигнала обратной связи регулируется скважность выходных импульсов и таким образом поддерживается стабильность выходного напряжения.

  • до 5А применяют линейные БП;
  • свыше 5А используют импульсные БП.
  1. Высокий коэффициент полезного действия (КПД), достигающий в некоторых случаях 98%.
  2. Небольшой вес, что связано с уменьшением размеров трансформаторов при использовании токов высокой частоты.
  3. Широкий диапазон питающего напряжения и частоты.
  4. Наличие большого количества встроенных элементов защиты и др.

Оба вида блоков в широком ассортименте представлены на отечественном рынке радиоэлектронной аппаратуры (РЭА). При этом большой популярностью пользуются универсальные БП, которыми оснащаются рабочие места работников предприятий, специализирующихся на производстве или ремонте РЭА. Имеются они и у каждого радиолюбителя.

УНИВЕРСАЛЬНЫЕ БЛОКИ ПИТАНИЯ

Универсальный БП — это надежный источник электропитания, обладающий стабильными выходными параметрами и имеющий двойной запас по мощности. На его передней панели в общем случае должны размещаться:

1. Стрелочные и цифровые измерительные приборы (вольтметр, амперметр). При этом: стрелочный даст возможность оценить динамические изменения контролируемых параметров; цифровой позволит с высокой точностью контролировать выходные характеристики БП.

2. Органы управления, с помощью которых регулируют выходные параметры в режимах «грубо» и «точно», индикатор режима работы, тумблер или клавишный выключатель питающей электросети.

Теоретически возможно, но практически нецелесообразно разработать и изготовить универсальный блок питания, который подойдет, как говорят, «на все случаи жизни». Такое устройство будет иметь огромные размеры и вес, а его стоимость превысит все допустимые пределы.

Поэтому современные универсальные источники вторичного напряжения классифицируются по мощности, по номинальному значению выходного напряжения и по количеству выходов питающего напряжения. Исходя из этих градаций и осуществляют выбор необходимого прибора.

  • низковольтные до 100 В;
  • средневольтные до 1000 В;
  • высоковольтные свыше 1000 В.
  • микромощные, выходная мощность которых не превышает 1 Вт;
  • малой мощности от 1 до 10 Вт;
  • средней мощности 10. 100 Вт;
  • повышенной (от 100 до 1000 Вт) и высокой (свыше 1000 Вт) мощности.

Блок питания с регулировкой.

Одним из самых простых универсальных источников электропитания является регулируемый. Например, для начинающих радиолюбителей таким устройством может быть блок питания с током нагрузки в несколько ампер и позволяющий регулировать выходное напряжение в пределах от 1 до 36 В.

К нему можно подключить не только радиотехническое устройство или электродвигатель, но и автомобильный аккумулятор для зарядки.

В основе электрической схемы такого блока питания лежит мощный силовой трансформатор, а на выходе устанавливается мощный транзистор, установленный на теплоотводящий радиатор. Управляет транзистором специальная микросхема. Имеющиеся низкочастотные пульсации и высокочастотные шумы сглаживаются электролитическими конденсаторами большой емкости.

ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ

Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.

Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.

Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).

Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.

Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение

220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.

  • большие габаритные размеры и вес, который может быть больше 20 кг. Из-за этого мощность на нагрузке у таких БП редко превышает 200 Вт.;
  • низкий КПД (не более 60%), что обусловлено принципом работы линейного стабилизатора, где все избыточное напряжение преобразуется в тепло;
  • наличие высокочастотных помех, проникающих из сети

В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).

  • плавного изменения глубины ШИМ, что в свою очередь, позволяет закачивать в сглаживающие конденсаторы такое количество энергии, которое соизмеримо с энергопотреблением нагрузки БП. При этом КПД блока питания может достигать 90 и более процентов;
  • высокочастотной составляющей, которая дает возможность использования сглаживающих конденсаторов значительно небольшой емкости.

За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.

  • высокочастотные пульсации на выходе, которые достаточно тяжело отфильтровать;
  • радиочастотные наводки и их гармоники, вызванные периодическими токовыми импульсами.
  • стандартные, мощностью до 700 Вт. Их максимальный вес не превышает 15 кг.;
  • большой мощности.

Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.

© 2012-2021 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Лабораторный блок питания

Для любителей электроники и различных самоделок необходимым атрибутом в их деятельности является лабораторный блок питания. Искать его в готовом виде в специализированных магазинах дело не всегда благодарное. В этом случае собрать простой аналог своими руками можно даже в домашних условиях с минимальным набором комплектующих.

Блок питания лабораторный

Что нужно знать

Оптимальными являются параметры, при которых имеется возможность регулировать напряжение в пределах 0-30 В. В цепи будет установлен электронный ограничитель по силе тока. Он будет с высокой степенью эффективности осуществлять регулировку параметров в пределах от 0,002 А до 3 А максимум. Это позволяет получить комфортный и универсальный прибор с возможностью регулировки мощности.

ЛБП 0-15В/5A

Ампераж успешно ограничивается, обеспечивая рабочие параметры. За счет этого приборы-потребители, подключенные к самодельному прибору element 305d или из atx, будут в безопасности и не сгорят из-за перепадов значений.

Для визуализации восприятия о том, что имеется погашаемое превышение, используется сигнальный светодиод.

Более подробно расположение всех составляющих демонстрирует потенциальная схема:

Схема расположения составляющих цепи

Схема расположения составляющих цепи

Она обладает такими рабочими параметрами:

  • Максимальный входной ток – 3 А.
  • Рабочее входное напряжение – 24 В (тип — переменный).
  • Выходной вольтаж – 0…30В.
  • Выходной ампераж – 0,002…2А.
  • Пульсация в пределах 0,01%.

К преимуществам можно отнести такие характеристики:

  • выходные параметры достаточно легко регулировать;
  • компактные габаритные параметры;
  • относительная простота изготовления;
  • несложная конструкция из подручных средств;
  • наличие нескольких степеней защиты, включая от ошибочного подключения;
  • наличие визуальной индексации.

Для таких целей подойдет переделка компьютерного блока питания. Он уже содержит немалое количество разных составляющих, но без китайских модулей.

ВИДЕО: Лабораторный блок питания из компьютерного АТХ

Как все работает

Перед тем, как сделать ЛБП самому, необходимо определиться с принципом работы аппарата и используемыми деталями. В комплект входит трансформатор. На вторичной обмотке он имеет выход в 3 А и 24 В. Для контактов используются клемма 1 и 2. Важно учесть, что именно он оказывает влияние на качество выходного сигнала.

Лабораторный блок питания на Ардуино

Лабораторный БП на Ардуино

Собираемый прибор с предрегулятором имеет диодный мост, выпрямляющий напряжение. Он собран из элементов от D1 до D4. Избавиться от возможных пульсаций помогает установленный фильтр. Он включает в себя конденсатор и резистор. В цепи присутствуют определенные особенности, отличающие сборку его из компьютерного железа.

Обычно применяют для управления выходным напряжением обратную связь. В предлагаемой схеме для данной цели к блоку питания в лабораторной схеме предлагается использовать операционный усилитель. Это позволит сформировать необходимый константный вольтаж. На выходных клеммах он будет наддать до уровня U1.

Регулируемый блок питания лабораторный на lm317 (схема)

Регулируемый блок питания лабораторный на lm317 (схема)

В цепи участвует диод D8 с напряжением 5,6 В (зенеровский). Он эксплуатируется с нулевым температурным коэффициентом. Также напряжение падает на выходе U1, выключая D8. После такого события происходит стабилизация цепи, а заряженный поток идет к точке сопротивления R5. Протекающий поток по оперусилителю варьируется незначительно, соответственно он тоже пойдет по точке R6, а также R5. При том, что один и другой рассчитаны для одинакового напряжения, то общий их показатель будет удвоен, ведь это сопоставимо с параллельным соединением.

В результате получим в блоке питания с предрегулятором на выходе из усилителя напряжение в 11,2 В. Схема будет иметь значение усиления в трехкратных пределах.

Корректировать выходные параметры в вольтах помогают элемент сопротивления R10 и RV1. Второй является триммером. В такой ситуации удается снизить вольтаж практически до нуля, несмотря на количество имеющихся потребителей.

С помощью такого агрегата удается сформировать наибольший ток на выходе, получаемый из PSU. Для обеспечения такого явления создаем падение вольт на R7. Он имеет прямую связь с нагрузкой. Выход U3 инвертирует сигнал с нулевым вольтажом, отправляя его на R21.

При константном сигнале IC пользователь сможет задать вариативный параметр, используя Р2.

Схематическое изображение функционала

Предположим, что для последнего выхода имеется несколько вольт. Именно Р2 помогает своей установкой в схеме обеспечить на выходе сигнал в 1 В. При повышении нагрузки получим константное напряжение. После этого установленный R7 будет оказывать не такое существенное влияние на процессы. Этому способствует пониженное его значение. Когда потребители и вольтаж стабильны, то система работает слаженно. Если повышать количество потребителей, то вольтаж на R7 повысится более чем одного вольта. U3 функционирует и сбалансирует имеющиеся показатели к исходным значениям.

Процесс сборки

Лабораторный блок питания на примере электроцепей с печатными платами является весьма популярным. В них платы изготовлены из тончайших изоматериалов. Одна из сторон покрыта медным напылением. Она сформирована так, чтобы компоненты можно было соединять проводниками по имеющимся схемам.

Блок питания на LM2576-ADJ своими руками

Блок питания на LM2576-ADJ своими руками

Защитить плату от окисления и разрушения помогает слой специального лака, нанесенный непосредственно на рабочую сторону.

Сборка всех деталей осуществляется при помощи пайки. От ее качества зависит работоспособность и функционирование всего блока питания. Для обеспечения качественного процесса необходимо соблюдать определенные правила:

  • Паяльник должен иметь мощность не выше 20-25 Вт.
  • Кончик паяльника подбирается достаточно тонким.
  • Жало выдерживается всегда чистым от нагара и мусора.
  • Применять нужно специальную губку для чистки.

Не стоит применять для очищения наконечника такие грубые материалы как наждачная бумага или грубый напильник. Если имеется сильное загрязнение, то кончик нужно заменить. В процессе используется высококачественный флюс. Он поможет обеспечить надежное соединение контактов с платой. При работе с припоем флюс можно не использовать, так как его избыток приводит к частым сбоям в подобных цепях.

Когда без флюса нет возможности обойтись, например, лужение контактов, то нужно очищать поверхность после прекращения работы.

Чтобы правильно спаять двухполярный лабораторный блок питания своими руками, необходимо соблюдать правила:

Лабораторный блок питания своими руками

У каждого радиолюбителя, будь он чайник или даже профессионал, на краю стола должен чинно и важно лежать блок питания. У меня на столе в данный момент лежат два блока питания. Один выдает максимум 15 Вольт и 1 Ампер (черный стрелочный), а другой 30 Вольт, 5 Ампер (справа):

лабораторные блоки питания

Ну еще есть и самопальный блок питания:

самодельный блок питания

Вот здесь можно прочитать про его сборку.

Думаю, вы часто их видели в моих опытах, которые я показывал в различных статьях.

Заводские блоки питания я покупал давненько, так что они мне обошлись недорого. Но, в настоящее время, когда пишется эта статья, доллар уже пробивает отметку в 70 рублей. Кризис, мать его, имеет всех и вся.

Ладно, что-то разошелся… Так о чем это я? Ах да! Думаю, не у всех карманы лопают от денег… Тогда почему бы нам не собрать простую и надежную схему блока питания своими ручонками, которая будет ничуть не хуже покупного блока? Собственно, так и сделал наш читатель. Нарыл схемку и собрал самостоятельно блок питания:

самодельный блок питания на 3 ампера

Получилось очень даже ничего! Итак, далее от его имени…

Первым делом давайте разберемся, в чем хорош данный блок питания:

— выходное напряжение можно регулировать в диапазоне от 0 и до 30 Вольт

— можно выставлять какой-то предел по силе тока до 3 Ампер, после которого блок уходит в защиту (очень удобная функция, кто использовал, тот знает).

— очень низкий уровень пульсаций (постоянный ток на выходе блока питания мало чем отличается от постоянного тока батареек и аккумуляторов)

— защита от перегрузки и неправильного подключения

— на блоке питания путем короткого замыкания (КЗ) «крокодилов» устанавливается максимально допустимый ток. Т.е. ограничение по току, которое вы выставляете переменным резистором по амперметру. Следовательно перегрузки не страшны. Сработает индикатор (светодиод) обозначающий превышение установленного уровня тока.

Итак, теперь обо всем по порядку. Схема давно уже гуляет в интернете (кликните по изображению, откроется в новом окне на полный экран):

Цифры в кружочках — это контакты, к которым надо припаивать провода, которые пойдут на радиоэлементы.

Обозначение кружочков на схеме:
— 1 и 2 к трансформатору.
— 3 (+) и 4 (-) выход постоянного тока.
— 5, 10 и 12 на P1.
— 6, 11 и 13 на P2.
— 7 (К), 8 (Б), 9 (Э) к транзистору Q4.

На входы 1 и 2 подается переменное напряжение 24 Вольта от сетевого трансформатора. Трансформатор должен быть приличных габаритов, чтобы в нагрузку он смог выдать до 3 Ампер в легкую. Можно его купить, а можно и намотать).

Диоды D1…D4 соединены в диодный мост. Можно взять диоды 1N5401…1N5408 или какие-нибудь другие, которые выдерживают прямой ток до 3 Ампер и выше. Можно также использовать готовый диодный мост, который бы тоже выдерживал прямой ток до 3 Ампер и выше. Я же использовал диоды таблетки КД213:

кд213а

Микросхемы U1,U2,U3 представляют из себя операционные усилители. Вот их цоколевка (расположение выводов). Вид сверху:

tl081 распиновка

На восьмом выводе написано «NC», что говорит о том, что этот вывод никуда цеплять не надо. Ни к минусу, ни к плюсу питания. В схеме выводы 1 и 5 также никуда не цепляются.

Транзистор Q1 марки ВС547 или BC548. Ниже его распиновка:

Транзистор Q2 возьмите лучше советский, марки КТ961А

кт961а

Не забудьте его поставить на радиатор.

Транзистор Q3 марки BC557 или BC327

Транзистор Q4 обязательно КТ827!

кт827а

Вот его распиновка:

кт827 распиновка

Схему я перечерчивать не стал, поэтому есть элементы, которые могут ввести в замешательство — это переменные резисторы. Так как схема блока питания болгарская, то у них переменные резисторы обозначают так:

Я даже указал, как узнать его выводы с помощью вращения столбика (крутилки).

Ну и, собственно, список элементов:

Теперь я расскажу, как я его собирал. Трансформатор уже взял готовый от усилителя. Напряжение на его выходах составило порядка 22 Вольта. Потом стал подготавливать корпус для моего БП (блок питания)

Лабораторный блок питания своими руками

Далее с помощью ЛУТа сделал печатную плату (печатка и описание работы блока питания будут в конце статьи по ссылке):

травление печатной платы Лабораторный блок питания своими руками

протравленная печатная плата

Лабораторный блок питания своими руками

Запаял кроватки для ОУ (операционных усилителей) и все другие радиоэлементы, кроме двух мощных транзисторов (они будут лежать на радиаторе) и переменных резисторов:

Лабораторный блок питания своими руками

А вот так плата выглядит уже с полным монтажом:

Лабораторный блок питания своими руками

Подготавливаем место под платку в нашем корпусе:

Лабораторный блок питания своими руками

Приделываем к корпусу радиатор:

Лабораторный блок питания своими руками

Не забываем про кулер, который будет охлаждать наши транзисторы:

Лабораторный блок питания своими руками

Ну и после слесарных работ у меня получился очень хорошенький блок питания. Ну как вам?

Лабораторный блок питания своими руками

Описание работы, печатку и список радиоэлементов я взял здесь в конце статьи.

Ну а если кому лень заморачиваться, то всегда можно приобрести за копейки подобный кит-набор этой схемы на Алиэкпрессе по этой ссылке

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: