Отличие терморезистора от термопары

Термопары и термосопротивления

Для измерения температуры служат первичные преобразователи температуры — термодатчики (термопреобразователи).

В промышленности, как правило, используются две разновидности датчиков температуры — термопары и термосопротивления. С приборами Термодат могут быть использованы термопары любого отечественного или иностранного производителя, при условии, что они имеют стандартную градуировку по ГОСТ Р 50342-92.

С приборами Термодат могут использоваться термосопротивления любого отечественного или иностранного производителя, при условии, что они имеют стандартную градуировку по ГОСТ Р 50353-92, при этом термосопротивления должны быть электрически изолированы от корпуса. Следует отметить, что приборы Термодат имеют универсальный вход, к которому также можно подключить пирометры (с градуировкой 20-РК15 и 21-РС20), а также другие датчики с унифицированным сигналом напряжения 0-50мВ или тока 0-20 мА (0-5мА, 4-20мА).

Термоэлектрические преобразователи (термопары)

Существует несколько типов термопар. Самые распространенные термопары — хромель-алюмель ХА(К) и хромель-копель ХК(L). Другие типы — платина-платинородий ПП(S и R), железо-константан ЖК(J), медь-константан МК(T), вольфрам-рений ВР и некоторые другие менее распространены. Приборы Термодат могут работать с термопарой любого типа. В памяти прибора прошиты градуировочные таблицы, тип градуировочной таблицы и соответствующее обозначение в меню указывается в паспорте прибора. Перед установкой прибора на оборудование следует установить тип используемой термопары. Тип термопары устанавливается в третьем уровне режима настройки приборов. В многоканальных приборах ко всем каналам должны быть подключены термопары одного типа.

Следует помнить, что термопара по принципу действия измеряет температуру между «горячим спаем» (рабочим спаем) и свободными концами («холодными спаями») термоэлектродов. Поэтому термопары следует подключать к прибору непосредственно, либо с помощью удлиннительных проводов, изготовленных из тех же термоэлектродных материалов. Температура «холодных спаев» в приборах Термодат измеряется в зоне подключения термопар (вблизи клеммной колодки) специальным термодатчиком и автоматически учитывается при вычислении температуры. Для достижения наибольшей точности и правильного измерения температуры холодных спаев, необходимо следить, чтобы в зоне контактной колодки отсутствовали большие градиенты температуры, конвективные потоки (обдув, ветер, сквозняки), а также лучистый нагрев от горячих тел. Если включить прибор Термодат, а вместо термопары к входу прибора подключить перемычку (закоротить вход), то прибор должен показать измеренную температуру в зоне контактной колодки (температуру «холодного спая»). Сразу после включения эта температура близка к температуре окружающей среды, а затем несколько повышается по мере саморазогрева прибора. Это нормальный процесс, так как задача термокомпенсационного датчика измерять не температуру окружающей среды, а температуру холодных спаев. При необходимости термокомпенсационный датчик можно подстроить. Подстройку следует выполнять в соответствии с инструкцией по калибровке.

Если у Вас возникли сомнения в правильности работы прибора, исправности термопары, компенсационного провода, в качестве первого теста мы рекомендуем погрузить термопару в кипящую воду. Показания прибора не должны отличаться от 100 градусов более чем на 1-2 градуса. Более тщательную проверку и настройку прибора Термодат можно выполнить в соответствии с инструкцией по калибровке.Приборы Термодат имеют высокое входное сопротивление, поэтому сопротивление термопары и компенсационных проводов и их длина в принципе не влияют на точность измерения. Однако, чем короче термопарные провода, тем меньше на них электрические наводки. В любом случае длина термопарных проводов не должна превышать 100м. Если требуется измерять температуру на больших расстояниях, то лучше использовать двухблочные системы с выносным блоком (приборы типа Термодат-22). В этих приборах связь между измерительным блоком и блоком индикации цифровая, расстояние межу ними может превышать 200м. Следует учитывать, что конструктивно термопары изготавливаются двух типов — изолированные или неизолированные от корпуса (горячий спай либо изолирован, либо приварен к защитному чехлу). Одноканальные приборы могут работать с любыми термопарами, а многоканальные — только с изолированными от корпуса термопарами.

К приборам Термодат могут быть подключены как медные (ТСМ) так и платиновые (ТСП) термосопротивления. При настройке прибора следует установить тип термосопротивления и его градуировку (сопротивление при 0°C) в третьем уровне режима настройки. Стандартные значения составляют 50 и 100 Ом (50М, 50П, 100М, 100П), однако могут быть установлены и другие значения. В многоканальных приборах ко всем каналам должны быть подключены термосопротивления одного типа.

Термосопротивления могут быть подключены к прибору Термодат как по трехпроводной, так и по двухпроводной схеме. Двухпроводная схема подключения дает удовлетворительные результаты, когда датчик удален на небольшое расстояние от прибора. Уточним наши слова. Предположим, Вы используете медное термосопротивление номиналом 100 Ом (градуировка 100М). Сопротивление этого датчика изменяется на dR=0,4%R=0,4Ом, при изменении температуры на один градус. Это означает, что если сопротивление проводов, соединяющих термодатчик с прибором, будет равно 0,4 Ом, ошибка измерения температуры будет равна одному градусу. В таблице приведены справочные значения сопротивлений медных проводов разного сечения, и допустимые длины проводов при двухпроводной схеме подключения.

Сечение подводящих проводов, мм² Сопротивление провода при 20°C, Ом/км Максимально допустимое удаление датчика, при котором ошибка, вызванная подводящими проводами при двухпроводной схеме подключения составляет один градус
М50, П50 М100, П100
0,25 82 2,5
0,5 41 2,5 5
0,75 27 3,5 7,1
1,0 20,5 5 10
1,5 13,3 7,5 15
2,0 10 10 20
2,5 8 12,5 25

При удалении термодатчика на большие расстояния следует применять трехпроводную схему подключения. Третий провод используется для измерения сопротивления подводящих проводов. Все три провода должны быть выполнены из одного и того же медного кабеля сечением не менее 0,5 мм² и иметь одинаковую длину (говоря точно, сопротивление проводов не должно отличаться друг от друга более чем на 0,2 Ом для ТСМ100 и более чем на 0,1 Ом для ТСМ50). Максимальная длина проводов не должна превышать 300м. Для работы с искрозащитными барьерами требуется четырехпроводная схема подключения термосопротивления. По специальному заказу приборы Термодат могут быть оборудованы входами для четырехпроводного подключения датчиков.

Для быстрой проверки работоспособности прибора, термодатчика, схемы подключения и настроек мы рекомендуем, как и в случае с термопарами, поместить подключенный датчик в кипящую воду или в тающий лед. Измеренная прибором температура не должна отличаться от 100°C (от 0°C) более, чем на 2°C. Прибор без датчика можно протестировать, подключив к входу вместо термосопротивления точный постоянный резистор номиналом 100 Ом (точность не хуже 0,5%). Установить тип термодатчика ТСМ или ТСП (роли не играет) и градуировку 100. После этого прибор должен показывать температуру 0±2°C. С помощью точного резистора аналогичным образом можно проверить качество длинной линии, подключив резистор вместо термосопротивления на длинной линии.

Диапазон измерения температуры, точность измерения и разрешение по температуре

Разрешение по температуре определяется последней значащей цифрой на индикаторе прибора и составляет 1°C для большинства моделей, работающих с термопарами. Для программных регуляторов температуры и части приборов, работающих с термосопротивлениями, разрешение составляет 0.1°C.

Разрешение по температуре следует отличать от точности измерения. Допускаемая относительная погрешность измерения приборов Термодат составляет 0,5% от нормирующего значения (класс точности 0,5). Под нормирующим значением принимается алгебраическая разность верхнего и нижнего пределов измерения. Максимальные диапазоны измерений температуры при работе с различными типами термодатчиков приведены в таблице. Из вышесказанного следует, что максимальная абсолютная погрешность измерения температуры приборов Термодат при работе с термопарой ХК (ХА) в диапазоне от -50 до 1100°C составляет 5,7°C. Погрешность измерения температуры приборами Термодат может быть уменьшена при их производстве путем уменьшения диапазона измерения. Так, например, при работе в диапазоне от 0 до 400°C погрешность составит 2°C. В этом случае, при выпуске и проведении поверки, в паспорте прибора должен указываться соответствующий диапазон измерений. Погрешность измерения темературы приборами Термодат не может быть меньше 2°C при работе с термопарами и меньше 0,5°C при работе с термосопротивлениями.

Тип термопреобразователя Диапазон измерения, °C Обозначение в меню настройки
Термопара ХА(К) -50 +1100 1
Термопара ХК(L) -50 +800 2
Термопара МК(Т) -50 +400 указывается в паспорте
Термопара ЖК(J) -50 +700 указывается в паспорте
Термопара ПП (S) 0 +1600 указывается в паспорте
Термопара ПП (R) 0 +1700 указывается в паспорте
Термопара ПР (B) +300 +1800 указывается в паспорте
Термопара ВР (А-1,А-2,А-3) +300 +2500 указывается в паспорте
Термосопротивление ТСМ (М50, М100) -50 +200 Cu
Термосопротивление ТСП (П50, П100) -50 +800 Pt
Читайте также  Изготовление дизайнерского кулисного шкафа

Погрешность измерения температуры складывается из погрешности измерения электронного прибора и погрешности датчика температуры. Максимально допустимая погрешность используемого Вами датчика температуры должна быть указана в его паспорте или ГОСТе. Для термопар, например, погрешность измерения связана с возможными отклонениями от номинальной статической характеристики (НСХ). В соответствии с ГОСТ Р 50342-92, для термопар ХА(К) второго класса точности допустимые отклонения от НСХ составляют 2,5°C в диапазоне температур 0-330°C и 0,0075*t °C в диапазоне температур 330-1000°C. В случае, если требуется более высокая точность измерения, следует применять термопары более высокого класса точности, а также термопары из благородных металлов (ПП или ПР). Следует отметить, что точность измерения температуры зависит не только от прибора и термодатчика. Многое зависит от конструкции объекта измерения, от точки расположения термодатчика, от качества теплового контакта с измеряемой средой, от условий отвода тепла холодной монтажной частью термодатчика. То есть, задача измерения температуры является сложной инженерной задачей и должна решаться специалистами.

В большинстве задач регулирования температуры быстродействия измерительного прибора не имеет значения, так как характерные времена тепловых процессов велики. Приборы Термодат последовательно опрашивают все каналы и производят измерения. В каждом цикле измерения производится измерение температуры холодных спаев и опрос опорных каналов для самокалибровки и балансировки нуля. Время измерения по одному каналу для малоканальных одноблочных приборов составляет 200мс, с учетом усреднений и пауз после переключения коммутатора. Полный цикл измерения составляет 2 сек для одноканального прибора, 2,5 сек для двухканального и 3 сек для трехканального. Время полного цикла измерения для многоканальных приборов зависит от количества установленных каналов измерения N и может быть оценено по формуле: Т= (0.6 + 0.2N) секунд.

В условиях повышенных электромагнитных помех показания прибора могут быть неустойчивыми и колебаться в пределах 1-2 последних разрядов. Эти колебания не выходят за пределы погрешности измерения, однако, вызывают неудовлетворенность работой аппаратуры. Мы рекомендуем в таких условиях включить программный цифровой фильтр. Фильтр включается наладчиком оборудования во втором уровне режима настройки. Алгоритм обработки результатов измерения при включении цифрового фильтра предусматривает анализ результатов измерений, отсев случайных выбросов, специальное цифровое сглаживание сигнала. Фильтр существенно увеличивает соотношение сигнал/шум в приборе и, соответственно, стабильность показаний прибора. Однако при включении фильтрации сигнала увеличивается постоянная времени прибора. Если условия работы прибора благоприятные, устанавливать цифровую фильтрацию не следует.

Температурные датчики, терморезисторы, термореле.

Температурные датчики, терморезисторы, термореле.

Датчики температуры — это датчики,которые значение температуры переводят в другие физические параметры, например, сопротивление или напряжение.

Терморезисторы

Терморезисторы — это температурные датчики, которые преобразуют значение температуры в сопротивление. Любой проводник имеет сопротивление, которое при изменении температуры также изменяется. Величина, которая показывает насколько изменяется сопротивление при изменении температуры на 1 0 С, называется температурный коэффициент сопротивления -ТКС, и если при увеличении температуры сопротивление увеличивается, то ТКС -положительный, а если уменьшается, то отрицательный.

Основные характеристики терморезисторов:

-диапазон измеряемых температур;

-максимальная мощность рассеивания (имеется ввиду тепловая характеристика);

Термисторы — это терморезисторы с отрицательным ТКС (NTC — negative temperature characteristic ). Изготавливают их из оксидов различных металлов, керамики и даже кристаллов алмаза.

NTC-резисторы применяют в качестве датчиков температуры, в бытовой технике и в промышленной, от -40 до 300 0 С.

Ещё одна область применения это ограничение пускового тока в различных электронных устройствах, например в импульсных блоках питания,которые есть абсолютно во всех устройствах питающихся от сети. При подключении к сети термистор имеет комнатную температуру и сопротивление порядка нескольких Ом. В момент зарядки конденсатор происходит скачок тока, но термистор не даёт ему подняться выше предела, зависящего от сопротивления термистора. При прохождении тока термистор разогревается и его сопротивление падает почти до нуля, и в дальнейшем он не влияет на работу устройства.

Схема защиты блока питания термистором

NTC-термистор на плате для защиты

Позисторы — терморезисторы с положительным ТКС (PTC — positive temperature characteristic ). Положительным ТКС, к примеру, обладают все металлы, также их изготавливают из керамики и полупроводниковых кристаллов.

Позисторы также применяют в качестве датчиков температуры,но на этом их область применения не ограничивается, их применяют:

В качестве защитных элементов в трансформаторах, электродвигателях и других электронных приборах, в которых есть риск возникновения перегрева. Для этого позистор включают последовательно с нагрузкой — обмоткой двигателя или электронной схемой, а сам позистор непосредственно в зону нагрева — приклеивают термоклеем к обмотке или заживают хомутом или просто прижимают используя термопасту. При этом такая защита от перегрева достаточно эффективна и не имеет пределов цикла включения/выключения, так как нет никаких размыкающих контактов, просто защитный термистор приобретает высокое сопротивление и через него проходт остаточный ток,значение которого совершенно не опасно для нагрузки. Но позистор всё-же можно вывести из строя — при резком скачке напряжения, так как ток превысит номинальный. Например, если вместо 220 В придёт 380 В, сопротивление его будет достаточно низким, так как температура в норме, а вот ток который через него пройдёт превысит номинальный и он просто выгорит, разомкнув нагрузку.

Защита от перегрева конденсатного насоса с помощью позистора

Ещё одно применение — запуск электродвигателей компрессоров. Применяется такая схема в маломощных холодильных машинах — холодильниках, морозильных камерах, в которых установлены однофазные электродвигатели с пусковой обмоткой. В современных кондиционерах такую схему уже не используют, используя двухфазные электродвигатели с рабочими фазосдвигающими конденсаторами.

Пусковое устройство компрессора на позисторе

В этом случае рабочую обмотку подключают непосредственно к сети, а пусковую через позистор. После запуска компрессора позистор нагревается от проходящего через него тока и увеличивает своё сопротивление, отключая пусковую обмотку. Кстати из-за этого при кратковременном пропадании питающего напряжения, компрессор может не запуститься, так как термистор не успеет остыть и выйдет из строя из-за перегрева основной обмотки.

Применяют PTC — резисторы в схемах запуска люминесцентных ламп.

PTC-термистор на плате

В этой схеме при включении лампы позистор имеет малое споротивление и через него протекает ток, при этом разогреваются нити накала в лампе и сам позистор, после нагревания цепь позистора размыкается и лампа включается уже с разогретыми электродами. Эта схема значительно продлевает срок службы энергосберегающих ламп.

Нашли применение данные терморезисторы и как датчики уровня жидкости. Схема контроля основана на разных свойствах жидкости и воздуха — теплоёмкость и теплопередача жидкости значительно превышает эти параметры в воздухе.

Также позисторы применяют в качестве нагревательных элементов — в бытовой технике, автомобильной промышленности. Это как раз те самые разрекламированные керамические нагреватели, которые «не сжигают кислород»

Термопары

Термопара — это термопреобразовательный элемент, представляющий собой «спай» разнородных металлов.

Термопара

В схеме с двумя такими спаями при разности температур между ними в цепи появится термо-ЭДС, величина которой будет зависеть от природы металлов и разности температур между спаями. Впервые термоэлектрический эффект обнаружили ещё в первой половине девятнадцатого века.

Применение для термопар самое различное — в промышленности, в медицине, для научно-исследовательских целей. Термопары могут измерять довольно высокие температуры, например температуру жидкой стали (около 1800 0 С).

Материал для изготовления термопар — медь,хромель,алюмель, платина, и полупроводниковые материалы.

Используется и обратный эффект — при пропускании электрического тока в цепи, появляется разность температур между двумя спаями, в середине прошлого века выпускали холодильники, рабочим элементом была термопара на основе полупроводников. Но из-за более низкого к.п.д., по сравнению с компрессорными холодильниками, их перестали выпускать.

Читайте также  Обшивка коридора гипсокартоном и плитами ОСБ

Полупроводниковые термочувствительные элементы

Хотя и терморезисторы изготавливаю из полупроводниковых материалов, но здесь речь идёт о эффекте изменения температуры на p-n переходе транзисторов и диодов. Эти приборы характеризуются температурным коэффициентом напряжения — ТКН. Это изменение приложенного напряжения при изменении температуры. У всех полупроводников он отрицательный равен примерно 2мВ/ 0 С.

На основе полупроводниковых датчиков температуры выпускают специализированные микросхемы, в которых на одном кристале помещается сразу и термочувствительный элемент усилители сигнала и схемы стабилизации. В настоящее время такие микросхемы широко распространены и выпускаются миллионами штук многими производителями. А потребитель получает готовое откалиброванное изделие с выходным сигналом нужной величины и нужной ему погрешностью (точностью). Используют такие микросхемы как датчики температуры в самых разнообразных устройствах.

Ещё одно применение полупроводниковых термодатчиков — в качестве элементов стабилизации и компенсации в электронных схемах. К примеру при протекании тока через мощные силовые элементы он нагреваются, изменяется х сопротивление и ,соответственно, параметры, чтобы компенсировать этот эффект, на его корпус крепят термотранзистор и включают в схему термокомпенсации.

Термореле

Термореле — это устройства для включения или выключения нагрузки при достижении определённой температуры, они преобразуют тепловую энергию в механическую, которая идёт на замыкание/размыкание электрических контактов.

Область применения данных изделий -автоматизация и защита устройств в быту, на производстве, в автомобилях. Например их используют в утюгах, тепловых завесах, электрокаминах. Главное их достоинство это невысокая цена и простота.

Выпускают регулируемые термореле и настроенные на определённую температуру срабатывания. С замыкающими и размыкающими контактами, а также с группами контактов на замыкание/размыкание одновременно.

Технические параметры термореле:

-температура срабатывания — температура при достижении которой происходит замыкание/размыкание контактов реле

-температура возврата, соответственно при ней происходит возврат в исходное состояние

-гистерезис (дифференциал) -разница между температурой срабатывания и возврата

-коммутируемый ток и напряжение, от этого параметра зависит долговечность прибора, стоит подбирать прибор с запасом по току

-погрешность прибора, например +/- 10%

Биметаллические термореле

В таких реле срабатывание происходит из-за изгиба платины или диска, выполненных из биметалла (то есть из двух металлов), из-за разного объёмного расширения разнородных металлов. Они достаточно простые безотказные

Схема бметаллического термореле

Биметаллический термоограничитель

Есть две разновидности этих типов реле — терморегуляторы и термоограничители. Первый тип регулирует температуру в определённых пределах, автоматически включая и выключая нагрузку, а вторые используются для защиты и требуют после срабатывания сброса специальной кнопкой.

Термодатчики манометрического типа

Измерение температуры этими датчиками основано на эффекте объёмного расширения различными жидкостями.

Манометрическое термореле Данфосс

Используют их,например в водонагревателях или в кондиционерах для включения подогрева картера и дренажа. Они представляют из себя колбу с жидкостью, которая контактирует с измеряемой средой и соединена с контактами металлической трубкой. В качестве рабочего вещества обычно применяют смесь на основе спирта или этиленгликоля.

Электронные термореле

Это уже довольно сложные электронные устройства которые коммутируют нагрузку с помощью электромагнитных реле, контакторов, датчиками температуры могут служить почти все вышеперечисленные типы. Обрабатывает сигнал микроконтроллер или же специализированная электронная схема. Такие приборы могут иметь несколько каналов, например, четыре,то есть могут контролировать четыре точки и управлять четырьмя нагрузками, а выдавать информацию на электронный дисплей. Для монтажа в электрощит выпускают термореле в корпусе под DIN-рейку.

Терморезисторы, термопары и магниторезистивные датчики

Терморезисторы — это разновидности параметрических резистивных датчиков, меняющие свое сопротивление в соответствии с изменением измеряемой температуры.

Терморезисторы бывают двух разновидностей: полупроводниковые и металлические. Для металлических терморезисторов используют такие металлы как платина и медь, причем эти металлы должны быть особо чистыми. Применяют также никелевые сплавы, которые имеют температурный коэффициент, в два раза более высокий, чем у платины, что значительно повышает чувствительность преобразования. Качественная зависимость от температуры отношения сопротивления терморезистора RT при температуре Т к его сопротивлению при нулевой температуре представлена на рис. 2.14. На этом рисунке характеристика 1 соответствует металлическому терморезистору, а характеристика 2 — полупроводниковому.

Зависимость сопротивления терморсзистора от измеряемой температуры

Рис. 2.14. Зависимость сопротивления терморсзистора от измеряемой температуры

Существует два способа измерения температуры с помощью терморезисторов:

  • 1. Температура определяется окружающей средой. В этом случае терморезистор называется термометром сопротивления и включается в схемы измерительных мостов.
  • 2. Температура определяется условиями охлаждения терморезистора, нагреваемого постоянным по величине током. Такая схема применяется, например, для построения датчиков потока жидкости или газа, теплопроводности окружающей среды, плотности окружающего газа и т.п.

Полупроводниковые терморезисторы называют термисторами.

Термометры сопротивления имеют чувствительность 0,1. 10 Ом/°С, воспроизводимость 0,05 *С, диапазон измеряемых температур 150. 850 °С, минимальные габариты 5 х 5 мм.

Термисторы имеют чувствительность 0,1. 1,0 Ом/°С, воспроизводимость 5 в С, диапазон измеряемых температур -100. +350 °С, минимальный диаметр 0,8 мм.

Примером терморезистора, использующего второй из вышеназванных методов измерений, является датчик анемометра, служащего для измерения скорости газового потока. Схематическое изображение этого датчика приведено на рис. 2.15. В соответствии с методом измерений, изображенным на рис. 2.15, нить 1 нагревается протекающим по ней током до температуры 200. 800 °С.

Одновременно она охлаждается газовым потоком. Коэффициент теплоотдачи является функцией скорости газового потока, и при постоянном токе накала нити ее температура также является функцией скорости этого потока. В описываемом устройстве нить 1 выполнена из платины и имеет длину 10 мм. Концы проволоки припаяны к держателям 2, закрепленным в корпусе 3. К этим держателям по проводникам 4 подводится электрическое питание.

Схема термометра сопротивления для измерения скорости газового потока

Рис. 2.15. Схема термометра сопротивления для измерения скорости газового потока

Интенсивность охлаждения газовым потоком нагретой металлической проволоки зависит не только от скорости этого потока, но и от его состава. Поэтому датчики такого рода находят применение, например, в системе контроля и регулирования содержания угарного газа СО в выхлопных газах автомобильного двигателя. Это содержание зависит от полноты сгорания топлива, а следовательно, и от оптимального для данных оборотов двигателя соотношения между расходом воздуха и бензина в рабочей смеси. Схема такой установки приведена на рис. 2.16.

На этом рисунке датчик в С.

Термопары вообще достаточно хрупки и подвержены коррозии. Поэтому их заключают в защитный корпус, внутри которого находится инертный газ, предохраняющий термопару от окисления. Наличие корпуса значительно увеличивает инертность термопары и уменьшает ее коэффициент полезного действия. Поэтому термопары не используются при измерении температур маломощных источников, а также тел, имеющих малую теплоемкость или малую теплопроводность. В промышленности термопары используют, например, при определении температуры в плавильных или закалочных печах.

Графическое изображение обмотки магниторезистивного датчика

Рис. 2.18. Графическое изображение обмотки магниторезистивного датчика

Наконец, следует назвать еще один из видов резистивных параметрических датчиков, так называемый магниторезистивный преобразователь. Сущность его работы заключается в том, что под воздействием магнитного поля некоторые ферромагнитные материалы, например пермаллой (80 % Ni и 20 % Fe), существенно изменяют свое сопротивление. Величина изменения сопротивления зависит от напряженности магнитного поля и угла между вектором напряженности магнитного поля и направлением тока.

Обмотка такого датчика выполняется методом травления или напыления на изолирующей подложке в виде так называемого двойного меандра, как показано на рис. 2.18. Сопротивления А и В включаются в плечи измерительного моста, и при подаче напряженности внешнего магнитного поля Н сопротивления А и В изменяются, так что мост оказывается разбалансированным. По напряжению, возникающему в диагонали измерительного моста, можно делать выводы о пройзошедшем изменении магнитного поля. Такой датчик может служить, например, для счета оборотов диска, в который заделан постоянный магнит. Во время каждого оборота диска при неподвижном жестко закрепленном датчике в рабочей зоне датчика возникает «всплеск» напряженности магнитного поля, что приводит к «всплеску» напряжения в диагонали измерительного моста. Таким образом можно построить датчик вращения циклического типа.

Меряем температуру термопарой

На сегодняшний момент существует два типа датчиков, позволяющих измерить температуру: терморезистор (термистор) и термопара. Принцип их работы почти ясен :) из названия: терморезистор — это резистор изменяющий свое сопротивление под действием температуры, термопара — два провода из разных материалов спаянные вместе, в которых при нагреве, за счет разности потенциалов, возникает ЭДС.
Обычно в автомобильных системах применяют терморезисторы, так как они способны работать при значительных механических нагрузках, но одновременно с этим преимуществом они имею и ряд недостатков: способны работать только в узком диапазоне температур, да и в этом диапазоне зависимость температура -сопротивление у них нелинейная, причем в течении срока службы эта зависимость изменяется. Термопара в этом плане проще, да и если ее механически не нагружать, то надежнее, да и диапазон рабочих температур у нее побольше. Поэтому в различных системах измерений чаще применяют термопару. А раз ее применяют, то нужно научится ее применять и нам — мы что рыжие? :)
На этом с теорией все, перехожу к практике. Кто хочет почитать о типах датчиков подробнее, могу порекомендовать статью — www.picad.com.ua/0105/pdf/50-54.pdf

Читайте также  Азбука из фетра

Электроника
ЭДС вырабатываемая термопарой очень небольшая — порядка нескольких миливольт, поэтому без усилителя не обойтись. Поискав в интернете я нашел 5 различных схем усилителей под термопару и на основе одной из них нарисовал свою

Как потом понял R3 лишний и его можно из схемы выбросить — коэффициент усиления мы все равно учтем потом программно.

Ну тут мне немного повезло — термопара паяльника (который нужно подключить) и имеющегося у меня мультиметра имели одинаковые характеристики, поэтому я просто крокодильчиками мультиметра "сел" на выход термопары, а второй мультиметр прицепил на выход схемы. Нагревая кончик паяльника(а соответственно и термопару) горелкой записал значения температуры и соответствующие им значения напряжения на выходе схемы.

Тем кому такая халява "не прокатит" придется или располагать обе термопары (подключаемую к контроллеру и мультиметра) рядом или мерять термопарой температуру у тел с точно известной температурой (например: льда — 0 С, человеческого тела -36,6С, кипятка — 100С).

Немножко математики
Заносим полученные данные в Excel, выделяем их и нажимаем кнопочку "мастер диаграмм"

Далее выбираем тип диаграммы "точечная" и нажимаем "готово"

Получили нашу зависимость "температура — напряжение" графически.

Если полученные точки не лежат примерно на одной линии, то значит намеряли мы чегой то неправильно — перемеряем. Если все "Ок", то клацаем мышкой на любой из построенных точек и, нажав на правую кнопочку, получим окошко, где выбираем "Добавить линию тренда".

В открывшимся окошке проверяем, чтобы "Тип" был "Линейный", а на вкладке "Параметры" нужно поставить галочку напротив "Показать уравнение на диаграмме".

Добавившееся на графике уравнение и есть искомая зависимость "напряжение-температура"

Теперь вспоминаем, что для AtMega АЦП при 0В на входе выдает 0, а при 5В — 1024 и пересчитываем "температура — напряжение" в "показание АЦП — температура" умножив на 5/1023:
у=206.36*х*(5.0 / 1023.0) -13.263
где х — показание АЦП, у — реальное значение температуры

Сборка
Описывать в данном пункте особо нечего — цепляем нашу схему к МК или платке Ардуино, подключаем туда же цифровую панель отсюда — www.drive2.ru/b/2826794/

Программа
Программу тоже берем для цифровой панели, изменив только основной цикл
void loop() <
unsigned long previousMillis = 0;
const long interval = 1000;
int sensorValue;
int temp_real;
//cчитываем показания АЦП
unsigned long currentMillis = millis();

if (currentMillis — previousMillis >= interval)
//Считаем реальное значение температуры
temp_real = abs(int(206.36*sensorValue*(5.0 / 1023.0) -13.263));
>
showNumber(temp_real);
>

Результат
Как то так

как видно изображение слегка дрожит -нужно усреднять показания, а не мерять через какой то интервал. но это уже будет учтено в окончательной версии

Как выбрать датчик температуры (термопару или термосопротивление)

В этой статье мы подробно попытаемся рассмотреть все вопросы связанные с термопреобразователями (термопарами и термосопротивлениями) их выбором и эксплуатацией. Основные вопросы, которые мы рассмотрим в рамках данной статьи :

Данная статья не претендует на звание «Основного академического труда по термопреобразователям» и ставит своей основной целью ознакомить Вас c общими знаниями и терминами, необходимыми для корректного приобретения данного типа изделий. В качестве образца написания используется маркировка ПО ОВЕН.

1. Что такое термопары и термосопротивления ?

Термопреобразователи — это устройства предназначенные для преобразования температуры в электрический сигнал, для его последующей обработки с помощью электроизмерительных приборов. Основными типами термопреобразователей являются термосопротивления и термопары.

Термосопротивления ( термопреобразователи сопротивления, термометры сопротивления) — это датчики, принцип действия которых основан на свойстве проводника менять электрическое сопротивление пропорционально изменению температуры окружающей среды. Конструкция этих датчиков представляет чувствительный элемент из тонкой медной или платиновой проволоки находящийся в защитном корпусе.

Термопары (преобразователи термоэлектрические) — это датчики, принцип действия которых основан на возникновении термоэлектродвижущей силы в месте соединения двух проводников с разными термоэлектрическими свойствами. Значение термоЭДС зависит от разности температур спая и холодных концов термопары.

Визуально отличить термопару и термосопротивление очень сложно, поэтому специалисты сразу ищут шильдик на датчике или документацию на изделие и по маркировке понимают, о каком типе датчика идет речь. Если заводской шильдик отсутствует и документация утеряна, то без электроизмерительных приборов даже специалист может ошибиться с типом датчика. Почему мы акцентируем на этом Ваше внимание? Все очень просто. Большинство приборов, котлов, агрегатов работают только с одним типом датчика : или термосопротивлениями, или термопарами, поэтому ошибка при покупке приводит к приобретению товара который некуда поставить и как следствие — происходит потеря Ваших денег и времени.

2. Какие бывают термосопротивления?

По типу чувствительного элемента термосопротивления бывают :

— ТСМ с чувствительным элементом из меди;
— ТСП с чувствительным элементом из платины.

Датчики ТСМ, в своем большинстве, имеют с градуировкой 50М и 100М. Датчики ТСП , в основном, встречаются с градуировками 50П, 100П, Pt100, Pt500, Pt1000 Бывают и другие варианты градуировок, для понимания сути вопроса это не критично.
Итак, данные сокращения расшифровываются следующим образом :
— 50М означает медный датчик с сопротивлением 50 Ом при температуре 0 градусов ;
— 100М означает медный датчик с сопротивлением 100 Ом при температуре 0 градусов ;
— 50П, Pt50 означает платиновый датчик с сопротивлением 50 Ом при температуре 0 градусов ;
— 100П,Pt100 означает платиновый датчик с сопротивлением 100 Ом при температуре 0 градусов ;
— Pt500 означает платиновый датчик с сопротивлением 500 Ом при температуре 0 градусов ;
— Pt1000 означает платиновый датчик с сопротивлением 1000 Ом при температуре 0 градусов ;
то есть в этом коде указывается материал чувствительного элемента и сопротивление при 0 градусов Цельсия.

По конструкции термометры сопротивления бывают :

— с кабельным выводом ;
— с коммутационной головкой.

Термопреобразователь с кабельным выходом Термопреобразователь с коммутационной головкой

По количеству чувствительных элементов термосопротивления бывают :

По схеме внутреннего соединения проводников термосопротивления бывают :

Электрические схемы двух-, трех- и четырехпроводных датчиков температуры :

По типу класса допуска термосопротивления бывают :

По исполнению коммутационной головки термосопротивления бывают :

— с пластмассовой головкой (исполнение по умолчанию) ;
— с металлической головкой (при заказе в конце марки датчика добавляется код МГ) ;
— с увеличенной пластмассовой головкой (при заказе в марке к модели добавляется код Л ) ;
— с увеличенной металлической головкой (при заказе в марке к модели добавляется код Л и в конце марки датчика добавляется код МГ) .

Увеличенная головка применяется для встраивания в датчик нормирующего преобразователя тока НПТ, что превращает обычное термосопротивление в преобразователь температуры с токовым выходом 0..20 или 4..20 мА.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: