Простейшая схема автоматического управления уровнем воды

Автоматика для насоса

Предлагаемый регулятор уровня воды применяется для автоматического поддержания насосом определенного уровня воды в емкости. Это может быть заполнение как бака отопления,так и накопительной емкости на даче для полива и душа, рис.1.

Работа регулятора уровня воды основана на свойстве электропроводности воды между датчиками, при помощи которых запускается и останавливается подкачивающий насос.
Обычно на баках имеется верхняя крышка на которой и монтируются три датчики. Лучше всего их изготовить из полосок или прутьев из нержавеющей стали, закрепленных на диэлектрическом материале не поглощающим влагу. Таким материалом может быть фторопласт, полиэтилен, резина и др.
Датчик Е1 самый длинный и доходит почти до дна емкости. Он является как бы базовым, на который подается постоянное напряжение от диода VD1. Датчики Е2 и Е3 определяют нижний и верхний уровень воды.

Двигатель насоса регулятора уровня воды управляется контактами двух реле — К1 и К2. Почему?

Если в баке нет воды, тогда тринистор VS1 будет закрыт, т.к. на его управляющем электроде нет напряжения для открытия. Реле К1 обесточено и своим постоянно замкнутым контактом К1.2 подает сетевое питание 220 вольт на катушку К2. Оно срабатывает и через контакт К2.1 запускает электродвигатель. Носос начинает заполнять бак до момента, когда вода не достигнет электрода верхнего уровня Е2.
Ток с Е1 через воду проходит до Е2 и открывает тринистор. К1 срабатывает, отключая контактом К1.2 насос, и включая К1.1 датчик нижнего уровня Е3, который и будет удерживать реле К1 в этом состоянии за счет тока протекающего между Е1 и Е3.
Регулятор уровня воды будет находиться в таком режиме до тех пор, пока уровень воды не будет ниже электрода Е3. Ток через воду прекращается и К1 отключается до следующего наполнения бака.

Трансформатор Т1 — мощностью 5. 6 ватт с напряжением на вторичной обмотке 15 вольт.
Расстояние между электродами подбирается так, чтобы при нахождении их в воде уверенно срабатывало К1.
Реле К2 для регулятора уровня воды выбирается с катушкой на напряжение 220 вольт и коммутирующими контактами на ток равный или превышающий рабочий ток электродвигателя насоса.

Устройство для перекачки воды и охраны местности

Автомат, схема которого показана на рис.2, адресован фермерам и владельцам дач с автономной системой водоснабжения, ключевыми узлами которой являются водный источник (река, озеро, колодец или скважина), электронасос да водонапорный бак. От аналогов данная разработка отличается тем, что помимо выполнения основной функции — управления электронасосом — позволяет довольно успешно решать еще задачи по охране объектов. Столь необычная универсальность достигается за счет быстрой смены датчиков, в качестве которых выступают не только погружные разноуровневые электроды, но и тонкая, работающая на разрыв проволока.

Действия автомата в системе местного водоснабжения сводятся к срабатыванию электромагнитного реле К1. Ведь именно оно, получая питание от трансформатора Т1 (через диодный мост VD1 — VD4 и тиристор VS1, который управляется датчиком SL1 уровня воды), включает или отключает электронасос.

Допустим, воды в баке настолько мало, что при переключении тумблера SA2 в положение «Насос» все электроды датчика SL1 оказываются разомкнутыми. Цепь управления тиристором, по сути, бездействует. Значит, ток через VS1 и обмотку реле К1 не течет, а на розетку ХS1 через нормально замкнутые контакты К1.1 подаются сетевые 220 В, заставляя систему пополнять емкость водой. Продолжается это до тех пор, пока уровень последней не дойдет до электрода В датчика SL1. Это максимум, по достижению которого тиристор открывается — и ток, протекающий через VS1 и обмотку К1, вызывает срабатывание реле. Размыкаясь, контакты К1.1 отключают электронасос. Одновременно с этим замыкаются К1.2, вводя в цепь управления тиристором электродную пару А-С датчика SL1 и обеспечивая автоматическое поддержание требуемого уровня воды в баке.

Действительно, с падением уровня воды ниже минимально допустимого разомкнется электродная пара А-С. Это вызовет моментальное закрывание тиристора и обесточивание реле, которое своими нормально замкнутыми контактами подаст напряжение питания электронасосу. Включившись в работу, тот пополнит бак. И вновь система перейдет в режим ожидания очередного понижения уровня воды. Датчиком уровня воды в баке служат три Г-образные металлические пластины, укрепленные на поплавке — изолированном основании.

При переключении тумблера SА2 в положение «Охрана» датчиком служит натянутый тонкий, скрытый от непосвященных провод (шлейф) между клеммами ХТ1 и ХТ2. Неповрежденный провод обеспечивает подачу управляющего напряжения для открывания тиристора VS1 и срабатывания реле, которое удерживает разомкнутыми контакты К1.1 в цепи электропитания нагрузки. В качестве последней выступает уже не насос, а световой или звуковой сигнализатор (например, лампочка, сирена или звонок). То есть, когда на охраняемых объектах все в порядке, напряжение в розетке XS1 отсутствует — и тревожный сигнал не поступает. С обрывом же шлейфа прохождение тока через тиристор и обмотку реле прекращается, и через нормально замкнутые контакты К1.1 включается сигнализатор.

Шлейфом, как уже упоминалось, служит тонкий изолированный или голый провод соответствующей длинны, располагаемый скрытно.

г. Нижнии Новгород

Схема управления водяным насосом

Цель данной разработки – сконструировать простую, но эффективную схему управления водяным насосом для наполнения или опустошения резервуара с водой, рис.3.

Основа схемы – интегральная микросхема К561ЛЕ5, состоящая из четырех логических элементов 2ИЛИ-НЕ.

В устройстве используются два датчика: короткий стальной прут – является датчиком максимального уровня воды и длинный – датчик минимального уровня. Сама емкость металлическая и подключена к минусу схемы. Если емкость не металлическая, тогда можно применить дополнительный стальной прут длинной, равной глубине емкости. Схема разработана так, что при соприкосновении воды с длинным датчиком, а также с коротким датчиком, логический уровень соответственно на выводах 9 и 1,2 микросхемы DD 1 меняется с высокого на низкий, вызывая изменения в работе насоса.

Когда уровень воды ниже обоих датчиков, на выводе 10 микросхемы DD 1 логический ноль. При постепенном повышении уровня воды, даже когда вода соприкасается с длинным датчиком на выводе 10, также будет логический ноль. Как только уровень воды поднимется до короткого датчика, на выводе 10 появится логическая единица, в результате чего транзистор VT 1включает реле управления насосом, который, в свою очередь, откачивает воду из резервуара.

Теперь уровень воды уменьшается, и короткий датчик больше не будет в контакте с водой, но на выводе 10 все равно будет логическая единица, таким образом, насос продолжает работать. Но когда уровень воды опустится ниже длинного датчика, на выводе 10 появится логический ноль и насос остановится.

Переключатель S 1 обеспечивает обратное действие. Когда резистор R 3 соединен с выводом 11 микросхемы DD 1, насос будет работать, когда емкость пустая, и остановится, когда емкость наполнится, то есть в этом случае насос будет использован для наполнения, а не для опустошения емкости.

Автомат "Бездонная бочка"

Несложную автоматику можна приспособить к насосу для поддержания заданного уровня воды в резервуаре. Принципиальная схема устройства на рис.4.

Уровень воды задается тремя электродами, один из которых является общим (Е1), два других (Е2) и (Е3) управляющими. При включении тумблера, если уровень воды не достигает датчика Е2, реле обесточено, и через его нормально замкнутые контакты К1.2 включится электродвигатель насоса. Как только уровень воды достигнет датчика Е2, реле сработает и контакт К1.2 разорвет цепь питания насоса. Одновременно контактная пара К1.1 подсоединяет к базе транзистора датчик Е3, обеспечивая открытое состояние полупроводникового прибора до тех пор, пока уровень не опустится ниже датчика Е3 (или Е1) и цикл закачки повторится. При выключении тумблера Q1 регулятор обесточится, насос закачку воды прекратит.

В устройстве применено электромагнитное реле с достаточно мощными контактами и сопротивлением обмотки 90 Ом, ток срабатывания – 90 Ом. Напряжение срабатывания 12 – 15 В.

Транзистор П213 допустимо заменить на П217, КТ814 с любым буквенным индексом. Радиатором для него служит отрезок алюминиевого уголка с шириной полки 40 мм.

Диодный мостик можно использовать типа КЦ402Г, или же собрать выпрямитель по мостовой схеме из диодов серии Д226, КД105.

Подстроечным резистором регулируется четкость срабатывания автомата, поскольку вода в разной местности имеет разную электропроводимость. Вместо подстроечного резистора подойдет и постоянный на 1 – 2 кОм мощностью не менее 0,5 Вт.

Трансформатор Т1 – маломощный, с напряжением вторичной обмотки 12 – 15 В.

Выключатель используется на коммутирующий ток не менее 2 А.

Регулятор монтируют в пластмассовом корпусе и устанавливают в сухом, защищенном от атмосферного воздействия месте, желательно ближе к силовой электропроводке.

Датчики Е1 – Е3 изготовлены из нержавеющих сварочных електродов, диаметром 4 мм. Длина Е2 меньше остальных на 40 – 50 мм. Они закреплены на эпоксидном клее в пластмассовом кронштейне, который крепится к внутренней стенке резервуара. Хвостовую часть датчиков необходимо загерметизировать клеем или герметиком.

Читайте также  Обезьянка – символ 2016 года своими руками

Если бак для воды изготовлен из металла, можно обойтись без датчика Е1. В таком случае проводник, идущий от резистора R 1, подключают к корпусу бака с помощью винта с шайбой.

Устройство несложно превратить в сигнализатор уровня воды. Для этого вместо реле включают лампу накаливания на напряжение 12 В или светодиод с гасящим сопротивлением порядка 2 кОм. Индикатор будет светиться, когда уровень воды достигнет датчика Е2. Датчик Е3 в таком случае не нужен.

Простейшая схема автоматического управления уровнем воды

Устройство, сделанное своими руками на одном транзисторе, может изготовить практически любой, кто этого захочет и приложит небольшие усилия для закупки очень недорогих и не многочисленных комплектующих и спаяет их в схему. Применяется она для автоматического пополнения воды в расходных ёмкостях дома, на даче и везде, где присутствует вода, без ограничений. А таких мест очень много. Для начала рассмотрим схему этого устройства. Проще просто не бывает.

Контроль уровня воды в автоматическом режиме с помощью простейшего электронного Схема контроля уровня воды.
Вся схема управления уровнем воды состоит из нескольких простых деталей и если без ошибок собрана из хороших деталей, то не нуждается в настройке и сразу заработает, как запланировано. У меня подобная схема без сбоев работает уже почти три года, и я ей очень доволен.
Схема автоматического управления уровнем воды

Список деталей

  • Транзистор можно применить любой из этих: КТ815А или Б. TIP29A. TIP61A. BD139. BD167. BD815.
  • ГК1 – геркон нижнего уровня.
  • ГК2 – геркон верхнего уровня.
  • ГК3 – геркон аварийного уровня.
  • D1 – любой красный светодиод.
  • R1 – резистор 3Ком 0.25 ватт.
  • R2 – резистор 300 Ом 0.125 ватт.
  • К1 – любое реле на 12 вольт с двумя парами нормально разомкнутыми контактами.
  • К2 – любое реле на 12 вольт с одной парой нормально разомкнутых контактов.
  • В качестве источников сигнала для пополнения воды в ёмкость, я применил поплавковые герконовые контакты. На схеме обозначаются ГК1, ГК2 и ГК3. Китайского производства, но очень приличного качества. Ни одного плохого слова сказать не могу. В ёмкости, где они стоят, у меня происходит обработка воды озоном и за годы работы на них ни малейшего повреждения. Озон является крайне агрессивным химическим элементом и многие пластики он растворяет совершенно без остатка.



Теперь рассмотрим работу схемы в автоматическом режиме.
При подаче питания на схему, срабатывает поплавок нижнего уровня ГК1 и через его контакт и резисторы R1и R2 подаётся питание на базу транзистора. Транзистор открывается и тем самым подаёт питание на катушку реле К1. Реле включается и своим контактом К1.1 блокирует ГК1 (нижний уровень), а контактом К1.2 подаёт питание на катушку реле К2, которое является исполнительным и включает своим контактом К2.1 исполнительный механизм. Исполнительным механизмом может быть насос для воды или электрический клапан, которые подают воду в ёмкость.
Вода пополняется и когда превысит нижний уровень, выключится ГК1, тем самым подготавливая следующий цикл работы. Достигнув верхнего уровня, вода поднимет поплавок и включит ГК2 (верхний уровень) тем самым замыкая цепочку через R1, К1.1, ГК2. Питание на базу транзистора прервётся, и он закроется, выключив реле К1, которое своими контактами разомкнёт К1.1 и выключит реле К2. Реле, в свою очередь выключит исполнительный механизм. Схема подготовлена к новому циклу работы. ГК3 является поплавком аварийного уровня и служит страховкой, если вдруг не сработает поплавок верхнего уровня. Диод D1 является индикатором работы устройства в режиме наполнения воды.
А теперь приступим к изготовлению этого очень полезного устройства.
Размещаем детали на плату.

Все детали размещаем на макетной плате, чтобы не делать печатную. При размещении деталей, нужно учитывать, чтобы паять как можно меньше перемычек. Нужно максимально использовать проводники самих элементов для монтажа.







Окончательный вид.

Схема управления уровнем воды запаяна.


Схема готова к испытаниям.

Подключаем к аккумулятору и имитируем срабатывание поплавков.

Всё работает нормально. Смотрите видео об испытаниях в работе этой системы.

Смотрите видео испытаний

Автоматическое управление водяным насосом (К561ЛА7, КТ604АМ)

В сельской местности водопровод есть не всегда и не везде, в лучшем случае водоснабжение из скважины, но чаще и из обычного колодца. Такая система водопровода требует использования накопительной емкости, в которую вода закачивается из колодца.

Для того чтобы поддерживать необходимый запас воды нужно периодически пополнять эту емкость, включая водяной погружной насос, находящийся в колодце. Вручную делать это хлопотно. Лучше эту работу поручить несложному электронному автомату.

Схема автомата изолирована от электросети, поэтому абсолютно безопасна для пользователя водопровода. Для определения уровня воды в резервуаре используются три щупа из нержавеющего металла (автор использовал три шампура из нержавеющей стали). Два из них опущены на глубину почти до дна резервуара.

А один сделан короче, так что бы контактировал с водой при полном резервуаре.

Резервуар — пластмассовый «еврокуб», в него помещается один кубометр воды. Для установки датчиков в верхней стенке «еврокуба» просверлены три отверстия, по размеру пробок от винных бутылок, так чтобы они туда туго вставлялись. В пробках прорезаны меньшие отверстия, в которые вставлены выше указанные шампуры (от шашлычного набора).

Длина одного шампура почти равна одному метру. Вот таких два вставлены служат датчиками Е2 и Е3, они опущены почти до дна «еврокуба». А третий шампур укорочен до 15 см.

Это датчик Е1, он контролирует верхний предел заполнения «еврокуба».

Принципиальная схема управления насосом

Когда «еврокуб» пуст, все датчики с водой не контактируют. На входы логического элемента D1.3 поступает напряжение высокого уровня через резистор R4 от источника питания. При этом на выходе D1.3 будет логический ноль. Он поступает на вывод 5 элемента D1.2, образующего вместе с элементом D1.1 обычный RS-триггер с инверсными входами.

Так как на выводе 6 D1.2 — ноль, триггер устанавливается в такое состояние, когда на выходе D1.1 так же ноль, а на выходе элемента D1.4 возникает логическая единица. Ток с выхода D1.4 через резистор R6 поступает на базу транзистора VТ1, тот открывается и реле К1, обмотка которого включена в его коллекторной цепи, своими контактами подключает насос, через разъем Х2 и Х2, к электросети.

Принципиальная схема устройства автоматического управления водяным насосом

Рис.1. Принципиальная схема устройства автоматического управления водяным насосом.

Насос начинает накачивать воду в «еврокуб». Сначала погружаются датчики Е2 и Е3. На входах элемента D1.3 устанавливается логический ноль, на его выходе единица. Но RS-триггер на D1.1 и D1.2 своего состояния не меняет. Как только уровень воды достигает датчика Е1 на выводе 1 D1.1 устанавливается логический ноль.

RS-триггер переключается и теперь на выходе D1.4 — ноль. Транзистор VТ1 закрывается и реле К1 выключает насос. «Еврокуб» заполнен.

В дальнейшем, на различные нужды вода из «еврокуба» расходуется, и её уровень в нем понижается ниже датчика Е1. Напряжение на выводе 1 D1.1 поднимается до логической единицы, но на состояние RS-триггера это никак не влияет. Насос будет включен только тогда, когда «обсохнет» датчик Е3.

Детали и налаживание

Реле К1 фирмы «Bestar» типа BS-115C-12A-12VDC с обмоткой на 12V и контактами на 240V и 12А. Реле можно заменить любым аналогом, полным или функциональным. Если это не полный аналог -потребуется внести изменения в монтаж.

Транзистор КТ604АМ можно заменить на любой КТ602, КТ603, КТ604 или КТ815.

Диоды 1N4004 — любые диоды на напряжение не ниже 400V.

Печатная плата для автомата управления водяным насосом

Рис.2. Печатная плата для автомата управления водяным насосом.

Трансформатор Т1 -китайский, неизвестной марки, от разбитого сетевого блока питания с выходным напряжением 12V. Можно подобрать любой аналогичный. Можно купить дешевый сетевой блок питания на 12V и использовать его вместо схемы T1-VD2-VD5-C2.

Конденсаторы должны быть на напряжение не ниже 12V.

Микросхему К561ЛА7 можно заменить на К176ЛА7 или зарубежным аналогом.

расположение деталей на печатной плате автомата управления насосом

Рис.3. Расположение деталей на печатной плате автомата управления насосом.

Схема монтажа показана на рисунках 2 и 3. Монтаж можно выполнить на печатной плате, но у автора не оказалось такой возможности, поэтому в качестве основы для платы был использован кусок строительного пластика. В общем, это очень похоже на гетинакс, но одна сторона цветная, с рисунком, а вторая коричневая.

В заготовке были просверлены отверстия согласно рис.2, затем в них, согласно рисунку 3, были установлены все компоненты. Выводы слегка подогнуты, чтобы не вываливались. Затем, взята медная проволока от телефонного кабеля, зачищена, облужена, и проложена с навивкой в один-два витка на выводы деталей, в соответствии со схемой соединений на рисунке 2. После все точки соединения пропаяны.

Конечно, это не так прочно и надежно, как печатная плата, но тоже работает, если в процессе эксплуатации нет серьезных механических воздействий на монтаж.

Читайте также  Перезарядка использованного перцового баллончика

Если монтаж делать на печатной плате, нужно рисунок 2 брать как схему расположения печатных дорожек и монтажных отверстий. Естественно, дорожки будут существенно шире, чем показано на схеме. А рисунок 3 брать как схему расположения деталей.

В принципе, налаживания никакого не требуется. Если все детали исправны и нет ошибок в монтаже, должно работать сразу. Единственно, может потребоваться подбор R2 и R4, — если в воде мало примесей, её токопроводность низка, и их сопротивление, в таком случае, придется увеличить.

Данный автомат можно применить там, где есть центральный водопровод, но работает с перебоями, для заполнения резервного резервуара, заменив насос на электромагнитный клапан.

Гайсаков В. РК-2016-03.

Литература: Афанасов В. И. «Автомат для сельского водопровода». РК2011, 3.

Микросхема К561ЛА7 и автоматика насосной станции на ней своими руками для частного дома

Блок автоматика

Владельцы индивидуальных строений возводят около своих жилищ колодцы или артезианские скважины, которые обеспечивают их водой.

Еще несколько десятков лет назад ее носили ведрами. Однако мы живем в то время, когда система автоматизации стала доступной для простого человека.

Она способна значительно облегчить тяжелый физический труд, высвободить время для продуктивной интеллектуальной деятельности.

В публикуемой статье подобраны советы домашнему мастеру по изготовлению простого автомата управления водяным насосом на основе доступной микросхемы К561ЛА7. Он хорошо справляется с водоснабжением частного дома. Его несложно изготовить своими руками. Излагаемый материал дополняется поясняющими картинками, схемами и видеороликом.

Микросхема К561ЛА7 в качестве основного элемента логики

Ее производство было широко налажено во времена СССР. Конструктивным исполнение стал пластмассовый корпус с двумя рядами четырнадцати выводов: по 7 штук с каждой стороны.

Микросхема К561ЛА7

В основу работы логики управления микросхемы КМОП структуры заложены четыре одинаковых элемента с двумя входами, работающими по принципу «И-НЕ».

Как сделать автоматику насосной станции

В статье рассматривается вопрос, когда водоснабжение дома уже организовано, то есть имеется колодец с водой и в нем смонтирован электрический насос, способный создавать необходимый напор для водоподъема.

Нам остается спланировать схему его управления в автоматическом режиме и выполнить ее монтаж отдельным блоком. Для этого потребуется любой паяльник и небольшой комплект электронных деталей.

Основные принципы работы силовой части

Управление насосом может проводиться двумя способами:

  1. в ручном режиме;
  2. автоматически.

Особенности подключения питания

Предлагаемый автомат предусматривает изготовление блока автоматики в виде отдельного корпуса, подключаемого в разрыв питания силовой цепи ручного режима.

Структурная схема включения водяного насоса

Это означает, что обычный водяной насос, например, бюджетная модель «Ручеек», включается в работу после того, как вилка шнура его питания вставляется в розетку и на нее подается напряжение включением автоматического выключателя.

На блоке автоматики тоже делается шнур питания с вилкой и выходная розетка, от которой будет подаваться напряжение на насос. Это позволяет в любой момент перевести схему на работу в ручном режиме для того, чтобы выполнить профилактику или ремонт схемы управления.

Как контролируется уровень воды

Логическая часть микросхемы автоматики постоянно сканирует состояние датчиков. Они выполнены простыми металлическими электродами в виде стержней из проволоки со слоем изоляции для НП и ВП (внизу она снята), а для ОП — оголенный металл: нержавейка или алюминий. Их располагают на разных уровнях.

Схема контроля воды

Нижнее положение воды в резервуаре оценивает датчик НП, а верхнее — ВП. Общий электрод ОП расположен так, что охватывает всю контролируемую область работы.

Подобное размещение позволяет микросхеме логики автомата определять наличие воды в резервуаре по прохождению токов, создаваемых приложенными потенциалами к электродам через жидкость. За счет этого судят об уровне:

  • верхнем — когда токи протекают между НП-ОП и ВП-ОП;
  • среднем — ток имеется только в цепи НП-ОП;
  • нижнем — тока нет нигде.

Особенности крепления блока

Подобную схему я собрал соседу в гараж. У него там сделана яма для хранения овощей. Место расположения около горы оказалось не совсем удачным. Весной при таянии снега, летом и осенью в дождь вода способна затопить подвальное помещение и ему приходится ее откачивать.

Собранная схема автоматики значительно облегчила управление насосом. Она смонтирована в корпусе от старого электронного блока с возможностью установки на столе, стеллаже или стационарном креплении на стене. Хозяин просто поставил прибор на полку, расположенную на двухметровой высоте и подключил его в сеть.

Автоматика успешно работала два года. Затем хозяин случайно задел за корпус и уронил прибор на бетонный пол. Внутри блока произошло короткое замыкание, сгорел понижающий трансформатор и микросхема К561ЛА7.

Монтаж системы автоматики и ее крепление выполняйте надежно. Сразу исключайте возможность случайного падения и повреждения оборудования любыми способами. Обращайте внимание на защиту корпуса прибора по квалификации IP.

Электронная схема

Для ее реализации используется микросхема К561ЛА7. Под нее создаются цепи:

  • питания;
  • контроля уровней воды датчиками;
  • светодиодной индикации;
  • управления коммутационным аппаратом.

Автоматика для насоса

Схема питания

Обратим внимание на:

  • трансформатор;
  • диодный мост;
  • стабилизатор напряжения.
Трансформатор

Для питания электроники потребуется понижающий трансформатор 220/10-15 вольт с током от 60 мА или выше. Его можно намотать самостоятельно по методике, расписанной мной в статье об электрическом паяльнике «Момент» или взять от старого лампового телевизора марки ТВК110Л. Также подобные модели не сложно купить через интернет в Китае или другой стране.

Диодный мост

Выбор КЦ405Е с допустимым током выпрямления 1000 мА в схеме приведен как пример. Вполне можно обойтись мостиком с уменьшенными номиналами или спаять диодную сборку из других доступных полупроводников с меньшей мощностью. Микросхема К561ЛА7 и подключенные к ней цепи управления не создают больших нагрузок.

Стабилизатор напряжения

Полупроводниковая сборка КРЕН8Б предназначена для стабилизации питания логической микросхемы на 12 вольт. Она выпускается в едином корпусе, широко применяется в радиоэлектронных устройствах.

Стабилизатор напряжения КРЕН

Ее вполне можно заменить самодельным стабилизированным блоком питания на биполярных транзисторах, но особого смысла заниматься этим вопросом я не вижу.

Схема контроля уровня воды

Способ подключения

Соединение электродных датчиков с входами логической микросхемы осуществляется проводами. Для их прокладки удобно монтировать две цепи:

  1. внутреннюю в корпусе блока автоматики;
  2. внешнюю к электродам.

Чтобы их соединить на корпусе прибора устанавливают клеммник любой доступной конструкции. Во внешней цепи необходимо хорошо выполнить изоляцию проводов, защитить места пайки от попадания влаги и воздействия коррозии.

Подключение датчиков уровня

Откачивание воды из резервуара

Положение перемычки J1, выделенной на электронной схеме автоматики коричневым цветом, определяет логику откачивания насосной станции. Ставим ее в позицию 1-2.

Не стану полностью описывать работу электроники, а на возникающие вопросы отвечу в комментариях. Просто кратко укажу, что при уровне воды выше верхнего положения логика подает сигнал на откачку, а насос будет работать до тех пор, пока не уберет воду так, что осушит, разорвет цепь между нижним и общим датчиками.

Когда вода снова заполнит резервуар, дойдя до верхнего уровня, то насос автоматически повторит только что описанный цикл.

Закачивание воды внутрь резервуара

Перемычка J1 устанавливается в позицию 2-3. Насос работает на заполнение емкости от сухого состояния до верхнего уровня и прекращает закачку на нем. При осушении емкости цикл возобновляется.

Силовая схема подключения напорной и сливной магистрали насоса должна соответствовать выбранному режиму управления и положению перемычки J1 в блоке автоматики.

Схема светодиодной индикации

Светодиоды можно монтировать любые, однако выбранные с более ярким свечением будут заметнее.

Горение светодиода HL1 свидетельствует о подаче напряжения на насос, то есть о его включении, а HL2 — на схему питания всего блока.

Схема управления силовым выходным контактом

Оптопара U1 обеспечивает гальваническую развязку цепей управления, воды и симистора VS1, подающего питание 220 вольт на насос. Технические характеристики КУ208Г обеспечивают управление электродвигателями мощностью до двух киловатт, что обычно достаточно для бытовых целей.

Варианты изменения силового каскада

Для подключения более мощных электродвигателей потребуется применять симисторы, выдерживающие повышенные нагрузки.

Альтернативным решением схемы является отказ от симистора и применение реле или магнитного пускателя. С этой целью необходимо заменить транзисторный ключ VT1 более мощным. Например, допустимо собрать составной транзистор из двух: КТ315 + КТ815 или их аналогов. Для такого подключения используют схему Дарлингтона.

Схема Дарлингтона

Она станет управлять обмоткой реле, подавать на нее напряжение.

Выходной контакт реле будет пропускать через себя ток нагрузки электродвигателя насоса. Чтобы увеличить его работоспособность рекомендуется все свободные контакты подключить параллельно, обеспечить их одновременное срабатывание.

При задействовании в схеме электроснабжения реле или пускателя необходимо уточнить мощность блока питания и характеристики понижающего трансформатора: возможно, его придется заменять усиленной моделью.

Стоит заметить, что собранная по любому из вариантов схема автоматики насоса работает сразу без необходимости сложной наладки. Главное условие: исключить ошибки при ее монтаже. Сборку блока автоматики допустимо выполнять навесным методом. Но лучше использовать печатную плату.

Для закрепления материала рекомендую посмотреть видеоролик владельца Vodjlei «Автоматика на насос Ручеек».

Читайте также  Королевский диван для куклы

Напоминаю, что сейчас вам удобно задать вопрос в комментариях и поделиться этим материалом с друзьями в соц сетях.

Простой автомат управления насосом

Простой автомат управления насосом

Вода в жизни человека – важнейший элемент, недаром, при освоении участка, одной из первостепенных задач для хозяев, становится обеспечение водой. Как питьевой, так и технической. Ну и вообще, в любом подсобном хозяйстве, задача хранения воды в емкостях и манипулирование ею, весьма распространена. Задача эта довольно проста, возникает с высокой периодичностью. Учитывая, что накопительные и опустошаемые емкости, как правило, расположены не в самом доступном месте, весьма полезно процессы эти автоматизировать.

Существует бесчисленное множество устройств разной сложности и удачности, для такого рода целей. Сонм их можно грубо разделить по типу датчиков – самая нежная и уязвимая часть автомата.

Простейшие устройства – с контактными датчиками, вроде кнопок. Очевидные недостатки – сложно сделать такого рода датчик надежным и долговечным – работа его предполагается в условиях, ну очень повышенной влажности, конструкция содержит более менее точные подвижные элементы. Сам же автомат, как правило, прост.

Следующее очевидное решение – применение бесконтактных датчиков, к коим, условно можно отнести и макаемые в воду электроды. При понятных преимуществах – надежность датчиков, имеем значительно более сложную и капризную, в том числе и в настройке, схему. Часто, для надежной работы схемы, вода должна быть неизменного качества (вплоть до температуры).

Как некая разновидность схемы с контактными датчиками — применение в качестве механических датчиков герконов – герметизированных контактов. Датчики уровня воды при этом, получаются вполне надежные – движущиеся части грубы и массивны, герметичность электрической части также легко обеспечить. Схемы управления весьма просты и не требуют сложной наладки. Датчик, как правило, представляет собой магнит на плавучем основании и несколько неподвижных герконов рядом.

Предлагаемая схема именно с герконами в качестве датчиков. Схема надежна, не сложна в настройке, не требовательна к точности элементов. Позволяет автоматизировать как набор воды в емкость, так и автоматическую откачку из нее (дренаж). В автомате предусмотрен ручной режим. Элементная база устройства проста и широко доступна.

Взглянем на схему устройства. Элементы простейшие, ценность представляет только контактор К1, остальное можно наковырять из электрического – электронного хлама.

Рассмотрим работу схемы.

Оба геркона датчика SF1 и SF2 включены в базовую цепь транзистора VT1. Замыкание геркона SF2 служащего датчиком нижнего уровня воды, вызывает закрытие транзистора, при замыкании геркона SF1 – датчика верхнего уровня – транзистор открывается. Цепь тиристор VS1 – реле К2 питается пульсирующим током от выпрямителя на диоде VD1. Тиристор открывается после открывания транзистора. При этом срабатывает реле К2, контакты которого подключают к сети обмотку магнитного пускателя К1.

В положении «Автомат» переключателя SA3 узел работает автоматически, а в положении «Ручн.» им можно управлять вручную запуская электродвигатель насоса нажатием на кнопку SB1 «Пуск» и останавливая кнопкой SB2 «Стоп». Введение переключателя SA2 позволило обеспечить работу автомата в режимах «водоподъем» и «дренаж».

При автоматической работе узла в режиме «водоподъем» в отсутствие воды в баке геркон SF2 разомкнут, транзистор VT1 закрыт. Замкнутыми контактами К2.1 включен магнитный пускатель К1, поэтому замкнуты пары контактов К1.1 и К1.2 пускателя – насос включен, вода поступает в бак. Как только поплавок поднимется выше геркона SF2, он разомкнется, однако транзистор останется закрытым, а насос продолжит заполнять бак водой. При достижении уровнем воды верхней отметки замкнется геркон SF1, откроется транзистор VT1 и вслед за ним тиристор VS1. Сработает реле К2 и контактами К2.1 выключит магнитный пускатель К1 – насос остановится.

Одновременно узел самоблокируется контактами К2.4. Поэтому, когда в процессе расхода воды уровень ее в баке понизится и разомкнется геркон SF1, транзистор VT1 останется открытым. Он закроется в момент замыкания геркона SF2, при этом насос включится и начинается процесс заполнения бака водой.

В режиме «Дренаж» насос включается при полном баке, а выключается в момент замыкания геркона SF2. Конденсатор С1 сглаживает пульсации выпрямленного напряжения, предотвращая вибрацию якоря реле К2.

В узле рекомендовано использовать герконы КЭМ-2. Реле К2 – РЭН18 (паспорт РХ4.564.702). Магнитный пускатель К1 – ПМЛ – 1000 на ток до 10А. Трансформатор выполнен на магнитопроводе Ш9х30. Сетевая обмотка содержит 5000 витков провода ПЭВ-2 0,08мм, вторичная – 280 витков провода ПЭВ-2 0,5 (ее переменное напряжение на холостом ходу – 13,5…14 В). Резистор R4 для повышения четкости срабатывания автомата, следует уменьшить до 100…200 Ом [1].

Автомат был собран в большой спешке (припекло) на кусочке фанерки и из самых бросовых деталей и элементов. Стояла срочная задача, автоматизировать отбор воды из импровизированной емкости при скромном дебете.

Что понадобилось для работы.

Инструменты, оборудование.

Фанерное основание было выпилено на циркулярной пиле, обрезано в размер на торцевой маятниковой пиле. Для монтажа пригодился шуруповерт – сверление и завинчивание саморезов, паяльник средней мощности с принадлежностями. Ножницы по металлу. Набор мелкого инструмента для электромонтажа, фен строительный или специальный для работы с термотрубками. При необходимости защитного покрытия деревяшки – кисть, посуда. Для изготовления датчика уровня воды пригодился набор слесарных и столярных инструментов, небольшая посудина для приготовления бетона, разметочный инструмент, выдавливалка для герметика.

Материалы.
Кроме радиоэлементов для изготовления автомата понадобился кусок толстой фанеры для основания, небольшой кусочек оцинкованной стали, кусочек DIN-рейки, монтажный провод, нейлоновые стяжки, крепеж. Для изготовления датчика уровня, понадобился кусок пластиковой канализационной трубы для наружной прокладки (оранжевого цвета) диаметром 110мм, кусок трубки от полипропиленового водопровода, материалы для приготовления бетона, силиконовый герметик.

Мелкие установочные элементы – реле, кнопки, тиристор, были закреплены на П-образном кожухе, согнутом из оцинкованной кровельной стали, внутри, удобно поместились несколько мелких радиоэлементов с проволочными выводами. Реле, в принципе предназначено для установки в специальный разъем, так что паять пришлось очень аккуратненько. Некоторые элементы смонтированны прямо на его, реле, контактах.

Крупные установочные элементы, имеющие ушки или иные приспособления для механического крепления, были закреплены саморезами, автоматический выключатель, промежуточная клемма и контактор, имели элементы для установки на DIN-рейку, кусочек ее и был задействован. Само фанерное основание-плата, при необходимости, может быть дополнено боковыми стенками и съемной (откидной) крышкой и превращено таким образом в пылезащищенную коробочку.

Датчик уровня был изготовлен, исходя из размера емкости, и представляет собой пластиковый кожух большого диаметра – из отрезка морозостойкой канализационной трубы (оранжевого цвета) диаметром 110мм. Для «заякоривания» на дне емкости, в нижней части трубы отлит бетонный груз, в нем, соосно с кожухом, вмурован заглушенный с одного конца, отрезок пластиковой полипропиленовой трубы. В него помещаются герконы. Снаружи трубы, на пенопластовой площадке-поплавке, плавает кольцевой магнит от динамической головки. Вода беспрепятственно поступает внутрь кожуха через множество просверленных отверстий. Сам же кожух, предохраняет магнит на поплавке от сцепления с другим оборудованием емкости – насосом, веревками его подвеса, сетевым шнуром и шлангом.

Для исключения выпадения бетонного груза из кожуха, в него (кожух), до заливки было ввинчено несколько длинных оцинкованных саморезов с широкими шляпками. После бетонирования, их выступающие внутрь концы, оказались замурованы в бетоне.

Поплавок приклеен к магниту силиконовым герметиком, лучшее его рабочее положение – вверх поплавком, наоборот — иногда тяжелый магнит перекашивает и заклинивает на трубе, если же он плавает под поплавком, то двигается за уровнем воды плавно и без заеданий.

Электрическая часть датчика уровня – два геркона с проводкой, помещаются внутрь белой «сухой» трубы. К выводам двух герконов с замыкающими (переключающими) контактами, припаиваются монтажные провода соответствующей длины (с некоторым запасом), места пайки отмываются от флюса и герметизируются. Для начала, лачком, в пару слоев, сверху термотрубкой. На выступающей части белой трубки, для каждой пары проводов, сверлятся по два отверстия одно над другим. Через них продергивают провода от герконов. Регулировка нижнего и верхнего уровня воды «на объекте», осуществляется регулировкой длины проводов герконов.

Собранный автомат работал только на стенде – проблема недостатка воды была решена самым радикальным способом – изготовлением полноценной каптажной камеры. Дебет родника при этом существенно повысился, настолько, что производительности насоса не хватает, чтобы вычерпать накопительную емкость. Риск «осушения» вибрационного насоса свелся к минимуму. Автомат, тем не менее, хранится и будет применен для автоматизации набора воды в емкости.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: