Простой инфракрасный сенсор

Схемы датчиков движения и принцип их работы, схемы подключения

Датчик движения чаще всего используется для включения освещения, когда вы проходите или находитесь рядом с ним. С его помощью можно хорошо экономить электричество и избавить себя от необходимости щелкать выключателем.

Это устройство также используется и в системах сигнализации, для определения нежелательных проникновений. Кроме этого их можно встретить и на производственных линиях, они там нужны для автоматизированного выполнения каких-либо технологических задач. Датчики движения иногда называют датчикам присутствия.

Содержание статьи

Датчик движения

Типы датчиков движения

Датчики движения различают по принципу действия от этого зависит их работа, точность срабатывания и особенности использования. У каждого из них есть сильные и слабые стороны. От конструкции и рода используемого элемента зависит и конечная цена такого датчика.

Датчик движения может быть выполнен в одном корпусе и в разных корпусах (блок управления отдельно от датчика).

Датчик движения

Контактные

Самый простой вариант датчика движения – использовать концевой выключатель или геркон. Геркон (герметичный контакт) это переключатель который срабатывает при появлении магнитного поля.

Суть работы заключается в установки концевого выключателя с нормально-разомкнутыми контактами или геркона на дверь, когда вы её откроете и зайдете в помещение контакты замкнутся, включат реле, а оно включит освещение. Такая схема изображена ниже.

Контактный датчик

Инфракрасные

Срабатывают от теплового излучения, реагируют на изменение температуры. Когда вы входите в поле зрения такого датчика он срабатывает на тепловое излучение от вашего тела. Недостатком такого способа определения являются ложные срабатывания. Тепловое излучение присуще всему что есть вокруг. Приведем несколько примеров:

1. ИК датчик движения стоит в помещении с электрообогревателем, который периодически включается и отключается по таймеру или термостату. При включении обогревателя возможны ложные срабатывания.

Можно попробовать этого избежать долгой и скрупулезной настройкой чувствительности, а также попыткой направить его так, чтобы в прямой видимости не было обогревателя.

2. При установке на улице возможны срабатывания от порывов тёплого ветра.

В целом эти датчики нормально работают, при этом это самый дешевый вариант. В качестве чувствительного элемента используется PIR-сенсор, он создает электрическое поле пропорционально тепловому излучению.

Но сам по себе сенсор не имеет широкой направленности, поверх него устанавливается линза Френеля.

Линза Френеля

Правильнее будет сказать – многосегментная линза, или мультилинза. Обратите внимание на окошко такого датчика, оно разбито на секции это и есть сегменты линз, они фокусируют попадающие излучения в узкий пучок и направляют его на чувствительную область датчика. В результате этого на маленькое приемное окошко пироэлектрического сенсора попадают пучки излучений с разных сторон.

Для увеличения эффективности детектирования движения могут устанавливать сдвоенные, или счетвертненные сенсоры или несколько отдельных. Таким образом, расширяется поле зрение прибора.

Исходя из вышесказанного нужно отметить и то, что на датчик не должен попадать свет от лампы, а также в поле его зрения не должно быть ламп накаливания, это также сильный источник ИК-излучения, тогда работа системы в целом будет нестабильной и непредвиденной. ИК-излучения плохо проходят через стекло, поэтому он не сработает, если вы будете идти за окном или стеклянной дверью.

Это самый распространённый вид датчика его можно купить а можно и собрать самому на основе, поэтому рассмотрим его конструкцию подробно.

Как собрать ИК-датчик движения своими руками

Самый распространенный вариант – это HC-SR501. Его можно купить в магазине радиодеталей, на али-экспресс, часто поставляется в наборах Arduino. Может использоваться как в паре с микроконтроллером, так и самостоятельно.

Он представляет собой печатную плату с микросхемой, обвязкой и одним ПИР-сенсором. Последний накрыт линзой, на плате есть два потенциометра, один из них регулирует чувствительность, а второй время которое на выходе датчика присутствует сигнал. При детектировании движения на выходе появляется сигнал и держится установленное время.

Он питается напряжением от 5 до 20 вольт, срабатывает на расстоянии от 3 до 7 метров, а сигнал на выходе держит от 5 до 300 секунд, вы можете продлить этот период, если использовать одновибратор на NE555, микроконтроллер или реле задержки времени. Угол обзора порядка 120 градусов.

HC-SR501

На фото изображен датчик в сборе (слева), линзу (справа внизу), обратную сторону платы (справа вверху).

Устройство датчика HC-SR501

Рассмотрим плату подробнее. На её передней стороне расположен чувствительный элемент. На задней – микросхема, её обвязка, справа два подстроечных резистора, где верхний – время задержки сигнала, а нижний – чувствительность.

В нижней правой части джампер для переключения режимов H и L. В режиме L датчик выдает выходной сигнал только она период времени выставленного потенциометром. Режим H выдает сигнал, пока вы находитесь в зоне действия датчика, а когда вы её покидаете сигнал, исчезнет через время заданное верхним потенциометром.

Схема датчика движения

Если вы хотите использовать датчик без микроконтроллеров, тогда соберите эту схему, все элементы подписаны.

Схема питается через гасящий конденсатор, напряжение питания ограничено на уровне 12В с помощью стабилитрона. Когда на выходе датчика появляется положительный сигнал реле Р включается через NPN транзистор (например BC547, mje13001-9, КТ815, КТ817 и другие). Можно использовать автомобильное реле или любое другое с катушкой на 12В.

Если вам нужно реализовать какие-то другие функции – можно использовать его в паре с микроконтроллером, например платой Ардуино. Ниже представлена схема подключения и программный код.

Простой датчик движения своими руками

Возможность контролировать перемещение людей в определенной области позволяет наладить автоматическое включение и выключение света, отпирание и закрытие дверей или вовремя зафиксировать появление злоумышленников. Реализовать такую опцию на практике помогает датчик движения, срабатывающий в случае перемещения определенного объекта в его рабочей области. Однако далеко не всегда есть возможность приобрести такое оборудование по ряду причин. Поэтому в данной статье мы рассмотрим вопрос о том, как датчик движения своими руками.

Виды датчиков движения

Основной задачей датчика движения является фиксация перемещения в заданной области. Как только объект пересечет указанную черту, или займет локацию в охватываемой датчиком области, сенсор воспримет это явление и передаст соответствующий сигнал. В обиходе, на сегодняшний день, присутствует достаточно большое разнообразие подобных устройств, отличающихся как функционалом, так и принципом действия:

  • инфракрасные – основаны на принципе изменения состояния электронного ключа под воздействием светового излучения;
  • радиоволновые – посылают в заданную область определенную частоту радиоволн, в случае появления препятствия волны отражаются и антенна воспринимает это излучение, подавая соответствующий сигнал в ответ;
  • тепловые – реагируют на появление предметов с определенной температурой в зоне охвата, пригодны для использования в помещениях или после захода солнца;
  • магнитные – представляют собой аналог кнопки, устанавливаемой на двери или калитке, срабатывают при открытии, такой тип датчика имеет существенные ограничения в работе;

Тепловые датчики движения будут сбоить при установке их на кухне около обогревателей и других источников тепла. Аналогичным образом боится воздействия помех и радиоволновой датчик. Поэтому широкое распространение получили инфракрасные устройства, работающие за счет фотореле, изменяющего уровень сопротивления при попадании световых волн. Наиболее простым и понятным в изготовлении будет инфракрасный датчик движения.

Схемы датчиков движения

Принцип действия датчика движения основывается на показаниях измерительного элемента, фиксирующего изменения определенного параметра в окружающей среде. В качестве воспринимающего элемента мы рассмотрим пиромодуль (PIR элемент) или фоторезистор, которые будут реагировать на изменение инфракрасного излучения. Наипростейшей схемой такого датчика является:

Схема датчика на пиромодуле

Рис. 1. Схема датчика на пиромодуле

Как видите на рисунке 1, пиромодуль PIR D203S включает в себя несколько элементов:

  • непосредственно сам пироэлектрик PIR;
  • полевой транзистор T1;
  • шунтирующий резистор R1.

Работа схемы происходит следующим образом: при попадании света на PIR датчик он изменяет параметр электрической величины и открывает цепь для протекания тока через нагрузку. Это наиболее простой вариант сенсора для датчика движения, вместо него можно использовать отечественный образец ПМ-4. Подключение последнего будет производиться немного сложнее и потребует отдельной установки некоторых радиодеталей. Схема подключения датчика ПМ-4 приведена на рисунке ниже:

Подключение сенсора ПМ-4

Рис. 2. Подключение сенсора ПМ-4

Данная модель PIR элемента, в отличии от предыдущей, имеет восемь выводов, 5 из которых нам понадобятся для подключения. Как видите на схеме 2, подключение происходит следующим образом:

  • выводы 1,6 и 8 необходимо объединить для подключения к минусовой шине;
  • клемма 8 подключается к клемме 2 через резистор R1;
  • вывод 2 подсоединяется к затвору транзистора VT1;
  • клемма 4 датчика подсоединяется к истоку транзистора VT1.

Нагрузка или рабочий электроприбор подсоединяется к стоку полупроводникового элемента. ПМ-4 гораздо чаще встречается у радиолюбителей, поэтому его проще найти в качестве подручного помощника. Но при отсутствии таковых из ситуации поможет выйти и обычный биполярный транзистор, если с него удалить верхнюю крышку, чтобы открыть доступ света к кремниевому кристаллу. В этом случае, на его основе также можно собрать датчик движения своими руками, рабочая схема такого датчика приведена на рисунке 3 ниже:

Схема датчика движения на основе транзистора

Рис. 3. Схема датчика движения на основе транзистора

Так как регулировка открытого и закрытого положения в датчике движения будет осуществляться за счет попадающего на кристалл светового потока, база удаляется и в работе схемы не участвует. В остальном схема будет работать по такому принципу:

  • при попадании света на открытый кристалл транзистора VT1 он откроется, и ток будет протекать через его цепь и усилитель DA1 к нагрузке;
  • в случае прекращения подачи светового потока на VT1 переход закроется и напряжение в точке А устремиться к нулю, конденсатор C1 начнет разряжаться;
  • питание нагрузки прекратится за счет закрытия фототранзистора, а возобновление наступит лишь после того, как барьер между источником света и приемником покинет заданную область;
  • на выход датчика движения можно подключить реле или контактор, которое будет управлять включением или отключением прожектора освещения.

На схеме R1 совместно с конденсатором C1 представляют собой времязадающую цепочку, поэтому от их параметров будет зависеть результат включения нагрузки. В нашем примере, наиболее часто встречается подключение освещения от датчика движения. Регулируемый резистор R2 установлен в цепь обратной связи усилителя, и чем больше его номинал, тем эффективнее работа усиления, но снижается устойчивость всей схемы. Поэтому подбор этих трех элементов нужно производить опытным путем, на рисунке выше приведены лишь приблизительные параметры.

Что потребуется для изготовления?

Для того чтобы собрать датчик движения своими руками вам понадобиться перечень радиоэлементов, изложенный в списке, если вы используете какую-либо другую схему, то детали подбираются под нее:

  • фоторезистор (при отсутствии можно заменить модернизированным транзистором, как рассматривалось на рисунке);
  • емкостной элемент;
  • усилитель с возможностью установки обратной связи;
  • два резистора, один из которых имеет функцию регулировки;
  • реле или контактор в качестве исполнительного блока;
  • светодиод или лазерная указка для источника освещения;
  • соединительные провода и плата.

Из инструментов вам пригодятся кусачки, паяльник и припой, если в ход пойдет монтажная плата, то возьмите любое приспособление для распила или отделения по точкам. Заметьте, что все соединения электрических деталей в соответствии с п.2.1.21 ПУЭ должны производиться пайкой, болтовым соединением, обжимом или опрессовкой, поэтому ни в коем разе не делайте скруток. Последний вариант актуален на этапе проектирования и подборки элементов, когда все узлы датчика движения находятся под вашим непосредственным контролем.

Процесс изготовления датчика движения пошагово

Подключите к прибору освещения

Качество и полученный результат при сборке датчика движения своими руками напрямую зависит от вашей осведомленности в радиомоделировании и наличия определенных навыков. Поэтому чтобы исключить элементарные неточности и ошибки мы приведем пошаговую инструкцию по изготовлению датчика движения:

Общее время: 1 час

Проверьте целостность деталей

Проверьте целостность деталей

Предварительно подготовьте радиодетали для датчика движения из предыдущего списка и проверьте их целостность визуальным осмотром.

Нанесите разметку на плату

Нанесите разметку на плату

Приложите детали к монтажной плате, рассчитайте их количество и способ расположения, исходя из принципа и схемы соединения датчика движения. Когда нужное число отверстий или размеры будут у вас, отметьте их на плате.

Отпилите по линии разметки часть платы

Отпилите по линии разметки

При помощи слесарного инструмента отпилите выделенный участок по нанесенной разметке. Во время распила платы весь массив желательно закрепить в тисках или прижмите к столу, так процесс будет легче, а линия отделения получится ровной.

Обработайте края напильником

Обработайте края напильником

Если у вас получились серьезные огрехи по краю платы или вам принципиально нужны ровные края для датчика движения, то их следует обработать наждачкой или напильником.

Вставьте детали в отверстия на плате

Вставьте детали в отверстия на плате

Установите все элементы в отверстия на плате. Монтаж производится таким образом, чтобы детали входили плотно, не болтались и не мешали поместить конструкцию в корпус.

Припаяйте элементы на плату

Припаяйте элементы на плате

С помощью паяльника и олова припаяйте все элементы сенсора движения на плату.

Подключите к прибору освещения

Подключите к прибору освещения

Теперь вы получили готовое устройство для фиксации движения, который можно подключить через реле к прибору освещения. Рекомендую обязательно опробовать работу перед установкой.

Заметьте, что в случае наружной установки совместно с прибором освещения важно обеспечивать достаточный уровень защиты от проникновения пыли и влаги. Поэтому собранная плата помещается в герметичный корпус, а все отверстия прорабатываются герметиком.

ИК ДАТЧИК ПРИБЛИЖЕНИЯ

Инфракрасный датчик приближения установленный на транспортных средствах, обнаруживает объекты или пешеходов, находящихся в опасной зоне. При обнаружении препятствия звуковой или визуальный индикатор подает предупреждение, которое помогает водителям предотвратить столкновения. Либо срабатывает защитный стоп механизм.

Напомним, что инфракрасный (ИК) датчик — это электронное устройство, которое обнаруживает инфракрасное излучение в окружающей среде. Есть два типа таких датчиков: активные и пассивные. Активные датчики излучают и обнаруживают отраженный инфракрасный свет. Активные ИК датчики состоят из двух частей — светоизлучателя и светоприемника. Когда объект приближается к датчику, инфракрасный свет от передатчика света отражается от объекта и обнаруживается приемником этого света. Активные инфракрасные датчики действуют как датчики приближения и широко используются в системах обнаружения препятствий. А пассивные инфракрасные (PIR) датчики только обнаруживают инфракрасное излучение от самих объектов в поле зрения, но почти не реагируют на активный постоянный инфракрасный свет.

Принципиальная схема и описание конструкции

Ключевым компонентом этой схемы является дешевый инфракрасный датчик приближения E18-D80NK. Он имеет сравнительно большой диапазон обнаружения (3–80 см) и нормально-высокий транзисторный NPN-выход логического уровня. Этот TTL-выход становится низким всякий раз, когда датчик обнаруживает препятствие. Рабочее напряжение 5 В постоянного тока.

Датчик представляет собой автономный инфракрасный датчик приближения, поэтому для работы с ним не требуется никаких внешних схем управления. Можно напрямую подсоединить слаботочное электромагнитное реле на 5 В или пьезоизлучатель к его выходу, как показано на схеме подключения. Выход может давать максимальный ток 100 мА при 5 В.

Специально для работы с датчиком E18-D80NK разработана схема сигнализации. Схема собрана вокруг 14-ступенчатого двоичного счетчика / делителя с переносом и генератора CD4060BE (IC1), который имеет 3 контакта генератора, 10 буферизованных выходов и блокирующий вход асинхронного главного сброса. Конфигурация генератора позволяет создавать схемы RC или кварцевого генератора. Как указано в документации на CD4060B, формула для установки частоты RC-генератора: F OSC = 1 / (2.2xR T xC T ). В нашем случае F OSC = 20,66 Гц. В результате частота возбуждения зуммера (Q4) составляет около 1,2 Гц, а частота мигания индикатора (Q5) — около 0,6 Гц.

Здесь вывод 7 IC1 управляет небольшим активным пьезозуммером (BZ1) через общий NPN-транзистор S8050 (T1), а вывод 5 управляет красным индикатором (LED1). Диод 1N4148 (D1), подключенный к пьезозуммеру не обязателен, но он должен быть там, если используете электромагнитный зуммер вместо активного пьезозуммера. Резистор 100 кОм (R1) является подтягивающим для главного контакта сброса IC1 (вывод 12) счетчика. Высокий уровень (H) на контакте 12 сбрасывает счетчик независимо от других условий входа.

Принцип работы схемы прост. Когда инфракрасный датчик приближения (E18-D80NK) обнаруживает объект впереди, его внутренний NPN-транзистор понижает выходной сигнал (H > L), и это действие включает генератор сигналов тревоги (CD4066BE), заземляя его контакт сброса (контакт 12) с выходом датчика.

Советы по сборке и установке

Вся электроника (за исключением инфракрасного датчика приближения) может быть собрана на пластине стандартной печатной платы. Следующий шаг — изготовить коробку для него и подготовить монтажный кронштейн для инфракрасного датчика приближения. Поскольку его корпус имеет резьбу и в комплект входят две гайки с накаткой, датчик можно надежно установить в отверстие диаметром 19 мм. Кабель E18-D80NK длиной 45 см служит для соединения между датчиком и сигнализацией.

Для питания всего этого потребуется стабилизированный источник питания 5 В постоянного тока. Следовательно, для автомобильного применения необходимо включить стабилизатор или понижающий преобразователь с 12 В на 5 В.

Чувствительность обнаружения регулируется с помощью многооборотной головки винта на задней панели устройства. Поворачивая головку винта по часовой стрелке или против, можно установить чувствительность, и следовательно диапазон обнаружения. Красный индикатор на той же стороне загорается при обнаружении объекта.

В общем инфракрасное устройство оповещения о близком объекте (активный инфракрасный датчик приближения) излучает импульсный ИК свет. Объект в зоне обнаружения будет отражать его, что приведет к срабатыванию сигнализации датчика. А максимальный диапазон обнаружения будет изменяться в зависимости от способности объекта отражать инфракрасный свет и настройки.

Теория и практика пассивных пироэлектрических датчиков или как сделать индикатор направления движения


В нашем несовершенном мире весьма востребованы разные технические штуки, призванные стоять на страже имущества и спокойствия граждан. Поэтому сложно, полагаю, найти человека, который бы никогда не видел охранных сигнализаций, снабженных датчиками движения. Физические принципы их работы, а также реализация могут быть разные, но, вероятно, наиболее часто встречаются пироэлектрические пассивные инфракрасные датчики (PIR).

Реагируют они на изменение излучения в инфракрасном диапазоне, а именно в средней его части — 5-15 мкм (тело среднего здорового человека излучает в диапазоне около 9 мкм). С точки зрения конечного потребителя штука очень простая — вход питания (чаще 12 вольт) и выход реле (обычно твердотельное и с нормально замкнутыми контактами). Прокрался кто-нибудь тепленький мимо — реле сработало. Скукота. Но внутри все не так просто.
Сегодня мы немного времени посвятим теории, а затем распотрошим один такой девайс и сделаем из него не просто датчик, реагирующий на факт движения, но регистрирующий направление движения.

Немного теории

Некоторые кристаллические вещества обладают свойством поляризоваться под действием падающего на них излучения. С изменением интенсивности излучения изменяется и поляризация, а, следовательно, и напряженность электрического поля в кристалле. Отсюда и название — пироэлектрики. Далее измеряя разность потенциалов между разными точками кристалла можно судить о величине излучения. Правда возникающая разность потенциалов довольно быстро компенсируется «налипающими» на кристалл заряженными частицами, которых в окружающем пространстве достаточно. По этой причине для измерения постоянной интенсивности излучения пироэлектрик не очень пригоден. Внятно может быть зафиксировано именно изменение излучения. Но в целях, в которых подобные датчики применяются — фиксация движения, это то, что нужно.
Вроде все просто, но есть небольшая проблема. Нам не интересно изменение излучения вообще, а интересно его изменение по причине прохода нарушителя. Но солнце встает и заходит, лето сменяется зимой, отопление включают и выключают, и падающее на сенсор инфракрасное излучение меняется в очень больших пределах, хотя никто и не думал покушаться на наше имущество. Понятно, что практическая ценность устройства, реагирующего на что попало, близка к нулю. Обходят эту неприятность довольно просто — вместо одного чувствительного элемента используют два. Включая их в цепь последовательно так, чтобы изменения напряженности на них происходили в противоположных направлениях. А конструктивно располагая с тем расчетом, чтобы «глобальное» изменение уровня инфракрасного излучения (скажем при изменении температуры воздуха) влияло на них в равной степени, а «локальное» (перемещение объекта вроде человека) — в разной. Чтобы было понятнее перейдем к иллюстрации (рисунки намеренно сделаны от руки, дабы несколько разнообразить засилье компьютерной графики).

Внутри металлического корпуса (изображено синим) помещают два кристалла пироэлектрика. Для измеряемого излучения в корпусе имеется окошко, закрытое фильтром (красный), пропускающим только нужный нам диапазон длин волн. Перед окошком размещают оптическую систему (зеленая), формирующую нужную диаграмму направленности датчика. Двояковыпуклая линза нарисована, конечно, условно. В реальных датчиках используют линзы Френеля, отштампованные на пластике (прозрачном в нужном диапазоне частот, само собой). Вот такие:

О линзах подробнее чуть позже.
Прямо рядом с кристаллами внутри корпуса (дабы не растерять в «дальней дороге» измеряемую величину) размещают полевой транзистор, сток и исток которого уже выведены наружу. Транзистор полевой неспроста. Этот прибор, как известно, управляется электрическим зарядом, изменение которого на кристалле мы, собственно, и измеряем. Биполярный транзистор здесь совершенно бы не подошел, как прибор управляемый током, которого пироэлектрик выдать не в состоянии. Резистор нужен для стекания паразитных статических зарядов, хотя несколько ухудшает чувствительность прибора.
Теперь о линзах. Без линз датчик имеет очень широкую диаграмму направленности — 100-120° по вертикали и горизонтали. При этом (условно) одну половину пространства «видит» один кристалл, вторую — другой. Т.е. получается этакий конус, рассеченный плоскостью, направление которой зависит от взаимного расположения кристаллов. Обычно эта плоскость вертикальна. При помощи линзы из двух получившихся полуконусов формируется два относительно узких «луча» диаграммы направленности. Это повышает чувствительность датчика по расстоянию и снижает паразитные шумы. Однако узость диаграммы приводит к возможности нарушителю легко обойти чувствительные зоны. Чтобы этого не случилось линз делают несколько (это как раз видно на фото выше) и, соответственно, формируют несколько пар лучей. Их вид и число зависят от области применения датчика. Скажем для коридоров нужно «видеть» узко, но далеко. Для квадратного помещения — близко и широко. Где-то нужно защитить зону под датчиком, где-то над ним и т. п. Но это все не принципиально, поэтому сосредоточимся на одной паре лучей, которую пересекает движущийся теплый объект.

По мере движения объект попадет в поле зрения одного кристалла, и тот сформирует импульс напряжения в соответствии с изменением уровня инфракрасного излучения. Когда объект попадет в поле зрения другого кристалла, тот тоже сформирует импульс, но другой направленности (мы же помним, что кристаллы включены в противоположной полярности). Если объект пересечет несколько пар лучей, то весь этот процесс повторится.

С этого момента уже становится понятно каким образом можно определить направление движения. Если зафиксирован сначала положительный импульс, а потом отрицательный, то направление одно, если наоборот — другое. Однако в бытовых датчиках, о которых мы ведем речь, это свойство не используется. Но далее мы это исправим.
Пользоваться сигналом прямо с сенсора нельзя — он слишком мал, а его среднее значение «плавает» в больших пределах. Сигнал нужно усилить, причем в сотни тысяч раз, избавиться от дрейфа среднего значения и преобразовать в дискретный вид — есть движение/нет движения. Типовая структурная схема датчика движения, решающая эти задачи, имеет такой вид:

Слабый сигнал сенсора усиливается и подается на пару компараторов, один из которых фиксирует превышение заданной амплитуды положительным импульсом, второй — отрицательным. Уже дискретный сигнал с компараторов отправляется на исполнительное устройство. В качестве последнего обычно выступает ждущий мультивибратор, который на некоторое фиксированное время включает реле, а то уже размыкает/замыкает охранный шлейф. В более продвинутых датчиках вместо компараторов могут быть более сложные схемы, обеспечивающие защиту от ложных срабатываний, резких колебаний параметров окружающей среды, срабатываний от движения мелких животных, дополнительную реакцию на пожар и т. п. В самых современных датчиках все это делается не аналоговыми схемами, а DSP.
Однако для достижения поставленной цели нас будет интересовать только то, что до компаратора. Т.е. усилительная часть, а конкретнее — выход уже усиленного сигнала пироэлектрического сенсора. Для того, чтобы можно было найти это место в разбираемом датчике, посмотрим что именно нужно искать. А искать нужно в первую очередь микросхемы операционных усилителей (ОУ), расположенных недалеко от сенсора.
Типовая схема усилителя выглядит приблизительно так (нарисовано приблизительно, поскольку вариаций конкретных исполнений не счесть):

В данном случае первый каскад представляет собой неинвертирующий усилитель, второй инвертирующий. Коэффициенты усиления каждого из них порядка десятков тысяч, а обоих порядка сотен тысяч. Но главный «секрет» в том, что обратные связи ОУ содержат элементы (а именно конденсаторы), делающие эти связи зависимыми от частоты. Номиналы элементов таковы, что вблизи нулевой частоты (постоянный ток) общий коэффициент усиления стремится к нулю, около частоты 5 герц находится максимум усиления, а при частотах более 10 герц снова стремится к нулю. Такая частотная характеристика не случайна. Размер области, которую захватывает наша пара лучей, порядка 0,5-1 метра. Скорость движения человека порядка 1-3 м/с. Соответственно частота пересечения чувствительных зон составит как раз единицы герц. А сигналы лежащие вне этого диапазона можно считать паразитными. В том числе и дрейф постоянной составляющей сигнала. Т.е. в потрохах датчика нужно искать нечто подобное выходу второго каскада усиления.

Переходим к практическим упражнениям

Вооружившись теоретическими сведениями достанем паяльник. На фото показан разобранный датчик (снята передняя крышка с линзами Френеля и металлический экран).

Смотрим маркировку ближайшей к пироэлектрическому сенсору (круглый металлический с окошечком — это он и есть) микросхемы и (о, удача!) ею оказывается LM324 — счетверенный ОУ. Путем рассматривания окружающих элементов находим вывод ОУ, наиболее вероятно подходящий для наших целей (в моем случае это оказался вывод 1 микросхемы). Теперь неплохо бы проверить, а то ли мы нашли. Обычно для этого используют осциллограф. У меня под рукой его не оказалось. Зато оказался ардуино. Поскольку уровень сигнала после усиления составляет порядка единиц вольт, и особой точности замеров нам не нужно (достаточно качественной оценки), то входы АЦП ардуино вполне подойдут. К найденному выводу ОУ и минусу питания паяем проводки и выводим на макетку. Провода не должны быть длинными. В противном случае есть шанс померить не сигнал датчика, а что-нибудь совершенно другое.
Теперь подумаем насколько быстро нужно считывать сигнал, чтобы получить что-то вменяемое. Выше было сказано, что частотный диапазон полезного сигнала ограничен величиной примерно 10 Гц. Вспоминая теорему Котельникова (или Найквиста — кому что больше нравится), можно сделать вывод, что замерять сигнал с частотой выше 20 Гц смысла нет. Т.е. период дискретизации в 50 мс вполне подойдет. Пишем простой скетч, который каждые 50 мс читает порт А1 и вываливает его значение в сериал (строго говоря, измерения сигнала происходят реже, чем через 50 мс, поскольку на запись в порт тоже нужно время, однако для наших целей это не важно).

Включаем и машем перед датчиком руками (можно побегать, даже полезнее). На стороне компьютера данные с порта вываливаем в файл.

Строим график (в файл добавлен столбец с нумерацией отсчетов):

И видим то, что, собственно, и хотели — разнополярные всплески напряжения. Ура, теория работает и провод припаян куда надо. А простой анализ (проще говоря — рассматривание) графика позволяет сделать вывод, что более или менее надежной фиксацией факта наличия движения можно считать отклонение сигнала на 150 единиц от среднего значения.
Настало время сделать, наконец, датчик направления движения.
Модифицируем схему. Помимо аналогового сигнала сенсора подключим к ардуино пару светодиодов (порты 2 и 3, не забудьте токоограничительные резисторы) и напишем чуток более сложный скетч.

Чтобы из всего множества лучей диаграммы направленности датчика оставить только одну пару, закрываем все, кроме одной, линзы Френеля бумажным экраном.

Наслаждаемся результатом.

Схема инфракрасного датчика

Инфракрасные датчики применяются во многих охранных устройствах, в автоматике. Их преимущества по сравнению с оптическими реагирующими на видимый свет и ёмкостными очевидны. Инфракрасные лучи невидимы. Они никому и ничему не мешают, а в случае с охранной системой, обеспечивают необходимую скрытность размещения датчика. Важный фактор и высокая стабильность, почти независящая от состояния окружающей среды (ИК-излучение хорошо проходит и через воду).

На Рис.1 приведена схема ИК-датчика, который может работать на отражение и пересечение луча. Благодаря использованию модуляции излучения и частотной селекции принимаемого излучения датчик хорошо защищён от помех инфракрасного излучения различных тепловых приборов и пультов дистанционного управления аппаратурой.
В основе схемы микросхема тонального декодера LM567. В ней есть мультивибратор, частота которого зависит от RC- цепи на выводах 5 и 6, и селективный усилитель с ФАПЧ (в составе которого работает это мультивибратор). Если частоту с выхода мультивибратора подать на ИК-светодиод, а на входе микросхемы включить фототранзистор, то микросхема будет реагировать (логическим нулём на выходе) исключительно на свет этого светодиода.

Ключ на транзисторах VT1 и VT2 усиливает по мощности импульсы, поступающие с вывода 5 А1, так чтобы яркость ИК-светодиода HL1 была достаточной для приёма её излучения фототранзистором FT1 с расстояния несколько метров. Чувствительность фототранзистора устанавливается подстроечным резистором R1 так чтобы получилась необходимая дальность.
Фототранзистор взят от неисправной механической компьютерной мыши. Он обладает достаточной чувствительностью. Его можно заменить любым другим фототранзистором. Но использовать интегральные фотоприёмники от систем дистанционного управления нельзя, так как они настроены на определённую частоту и имеют встроенный формирователь логических импульсов.
ИК-светодиод – любой светодиод, применяемый в пультах дистанционного управления.
На Рис.2 приводится разводка печатной пакты для датчика (размером 54х28 мм.), работающего на отражение. ИК-светодиод на плате расположен со стороны печатных проводников, а плата служит светонепроницаемой перегородкой, исключающей прямое попадание света от него на фототранзистор. Для обеспечения непрозрачности платы в этом месте есть большой непротравленный участок фольги. Этот участок желательно закрасить чёрным маркером, чтобы он был чёрного цвета.

Для работы на пересечение луча ИК-светодиод располагают далеко за пределами платы, и устанавливают его напротив, нацелив на фототранзистор.
Практически применение датчика, – охранные системы, устройства бытовой и производственной автоматики, а также в качестве пожарного датчика задымления. В этом случае при возникновении задымления окружающая датчик среда становится малопрозрачной из-за частиц дыма и оптическая связь нарушается.

источник: Справочник. Тональный декодер LM567.
Радиоконструктор 2006 – 06, стр. 9
Радиоконструктор 2006 – 10, стр. 38

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: