Простой преобразователь для питания энергосберегающих ламп

Как сделать блок питания из энергосберегающей лампы своими руками

Многие электрические устройства после поломки можно использовать повторно. Большинство из них могут стать ценным материалом, своего рода вторсырьем для вторичного использования. Можно ознакомиться на просторах интернета с разными инструкциями необычных самоделок на основе интересующих вас аппаратов. Так, народные умельцы быстро сообразили, что можно сделать блок питания (БП) из вышедшей из строя энергосберегающей лампы (ЭСЛ) своими руками.

Схемы энергосберегающих ламп можно назвать уже наполовину готовым блоком питания. Осталось сделать разделительный трансформатор, потом выпрямитель и удалить ненужные детали. Также помните, что для разработки БП следует выбирать ЭСЛ мощностью не менее чем на 20 Вт, другие лампы могут пойти на запасные части.

Выходное напряжение такого блока получится постоянным, переменное же напряжение в энергосберегающих лампах не предусмотрено. На практике встречается, что лампы от других производителей имеют разные схемы, но разница обычно не очень сильная.

Энергосберегающая лампа

Как сделать блок питания из энергосберегающей лампы

Может показаться, что это дело так называемых радиолюбителей, опытных мастеров работы со схемами, электроприборами.

Но на деле оказывается, что заниматься «оживлением» старой техники может практически любой человек, сталкивающийся в быту с электрическими устройствами. Достаточно работать по плану и иметь схему устройства перед глазами. Мы подготовили наглядную электросхему и поэтапный план работы над блоком из ЭСЛ.

Разбираем лампу

Будьте осторожны, когда разбираете ЭСЛ. Повредив целостность колбы, можно выпустить вредные пары ртути, которые быстро распространяются вокруг. Рекомендуем аккуратно, не спеша поддевать маленькой отверткой в месте шва.

Разобранная лампа

Когда вам открылась схема, соединенная с колбой четырьмя выводами питания, отрежьте их и внимательно рассмотрите состояние элементов. Внешне можно понять, что они вышли из строя, по подгоревшим местам, вздутиям; могут отпаяться концы соединений. После внешнего осмотра необходимо прозвонить электрическую цепь. По опыту радиолюбителей в ЭСЛ часто портятся конденсаторы и резисторы.

Выходят из строя чаще всего именно конденсаторы и резисторы по причине частых включений и выключений энергосберегающей лампы. Если реже «щелкать выключателем», можно сохранить жизнь ЭСЛ на чуть более долгий срок.

Запасные элементы берутся из схем других энергосберегающих ламп, отложенных вами для будущего блока питания. После того, как из нескольких схем соберете одну, можно двигаться дальше.

Вам нужно решить, блок питания какой мощности вы хотели бы собрать. Если мощность блока равна мощности энергосберегающей лампочки, то больших изменений не потребуется; если же захотите увеличить мощность блока питания, то нужно добавить вторичную обмотку, выложенную медным проводником.

Подготовительные работы

Схема

Итак, мы уже удалили контакты, идущие до колбы. Красным на схеме изображен удаленный нами узел ЭСЛ. На оставшиеся концы в схеме садим перемычку. Для повышения выдаваемой мощности нужно добавить к дросселю (на схеме L5) дополнительную (вторичную) обмотку. Появится резерв мощности блока питания за счет нее.

Помимо этого, добавляем новые детали в схему:

  • конденсаторы (на схеме C9, С10)
  • мост диодный (VD14-VD17)

Схема 2

Поместите изоляцию между обмотками. Советуем использовать политетрафторэтиленовую ленту.

Нужное количество витков для вторичной обмотки определяется в несколько этапов:

  1. Укладывается временная обмотка около десяти витков и соединяется с нагрузочным сопротивлением, имеющим характеристики в пределах 30-ти ватт и более, и собственно самим сопротивлением от 5 до 6 Ом;
  2. После подключения питания измеряется напряжение на нагрузочном сопротивлении;
  3. Полученные цифры напряжения делятся на число витков – так узнается, какое напряжение приходит на один виток;
  4. Расчет нужного количества витков для питания постоянной обмотки и подбор диаметра проводника для вторичной обмотки.

Диаметр вторичной обмотки советуем выбрать 0,5 мм.

Количество нужных витков:

X = Uвых (достигаемое напряжение БП) /Uвит (напряжение одного витка)

Кардинальные преобразования

Однако надёжней сделать импульсный блок питания с нуля, поискав трансформатор с нужными характеристиками в старой электронике. Заводские трансформаторы будут гораздо долговечней самоделки. И не нужно к тому же высчитывать количество витков по формуле, достаточно присоединить паяльником концы обмотки трансформатора к схеме.

Если вы хотите сильно увеличить мощность блока питания, в несколько раз, то нужно выпаять старый дроссель и присоединить новый (на схеме ниже обозначен как TV2). Подсоединяем к блоку два диода, составляющих выходной выпрямитель (на схеме VD14, VD15), заменяем диоды на входном выпрямителе с большей мощностью (на схеме RO) и ставим конденсатор с большей емкостью (на схеме CO). Подбирать конденсатор необходимо в пропорциях 1 Ватт выходной мощности = 1 микрофарад. На схеме изображено сто микрофарад на сто ватт.

Сто ватт

Опробовать блок питания можно на лампочке аналогичной мощности. Главное следить за тем, чтобы температура трансформатора нашего блока не превышала 60ºС, а транзисторов 80ºС. Измеряется температура ртутными либо спиртовыми термометрами. Также есть так называемые заводские термопары и термосопротивления. Опытный радиолюбитель всегда имеет такие приспособления под рукой.

Советуем посмотреть видео-инструкцию:

Что можно еще сделать из энергосберегающей лампы

Из нескольких неисправных ЭСЛ можно собрать одну работающую. Радиолюбители делают, например, такие самоделки, как усилитель низких частот, драйвер для питания и управления светодиода. Из цоколя можно сделать маломощный удлинитель для блока зарядки и мобильных устройств, ноутбуков и так далее; такой удлинитель получает питание не от розетки, а патрона, что очень пригодится в поездках за границу, где могут отличаться стандарты розеток от стандартов российских. Импульсный блок питания, сделанный из энергосберегающих ламп, используют ещё для работы шуруповерта.

Мы хотели бы рассказать о такой самоделке от народных умельцев, как импульсный паяльник.

Импульсный паяльник

Для начала перечислим его преимущества над обычным паяльником:

  • Быстрый прогрев жала и такое же быстрое остывание при отключении питания;
  • Электроэнергия используется только в момент пайки;
  • Жало легко меняется, на замену подойдет кусочек медной проволоки 3–3,5 мм 2 .

Импульсные паяльники приобрели широкую известность, несмотря на то, что имеют пару досадных недостатков: они тяжелей обычных паяльников и не подходят для пайки микросхем, очень чувствительных к перегреву. Но всё-таки преимущества нивелируют эти недостатки; среди знающих людей всё чаще встречаются эти типы паяльников.

Импульсный паяльник

Из деталей ЭСЛ нам понадобится только балласт (преобразователь). Отдельно собирается трансформатор, преобразующий 220 вольт в любое низкое напряжение.

  • Медные провода сечением 3–3,5 мм 2 и 2 мм 2 ;
  • Шнур с вилкой;
  • Рукоять с кнопкой.

Для сборки трансформатора необходимо сначала поискать парочку ферритовых колец. Первичную обмотку намотать на одно кольцо; обмотку сделать до 120 витков. Не забываем про изоляцию между обмотками, для неё можно использовать политетрафторэтиленовую ленту. Для вторичной обмотки понадобится всего один виток медной проволочки диаметром 3 – 3, 5 мм 2 . Вторичную обмотку тоже нужно изолировать. К ней и будет крепиться жало паяльника, сделанное из медной проволочки 2 мм.

Первичная обмотка присоединяется к выходным контактам преобразователя. Ко вторичной обмотке болтами или цангой прикрепляется жало.

Контакты внутри пистолетной рукояти соединяются с первичной обмоткой трансформатора, с другой стороны цепи – через кнопку – идет соединение со шнуром, вилка которого подключается в сеть питания на 220В.

Получиться может, например, такой самодельный аппарат:

Паяльник Самодельный паяльник

Импульсный паяльник готов!

В заключение

Радиолюбители практически любое сломанное устройство могут использовать повторно, дать ему вторую жизнь. Прежде чем выбрасывать какой-то прибор, присмотритесь к нему, не поленитесь найти в интернете информацию о том, что можно сделать из него, какие детали использовать для будущего самодельного устройства, найдите электрическую схему.

В наше время люди часто выбрасывают отработавшую технику и электронику, которые увозятся на мусорные полигоны, там без толку гниют. Особенно это касается энергосберегающих ламп и прочих маленьких бытовых устройств.

Можно сдавать в металлолом, в пункты приема отработавших электроприборов, но правильней всего научиться использовать каждую деталь по максимуму, пока они совсем не станут непригодными для работы. Можно сделать пробу на энергосберегающей лампе, превратив её в импульсный блок питания.

Читайте также  Пылесос циклон для мастерской

Оставляйте комментарии и делитесь со статьей в социальных сетях. И помните, что любая техника может использоваться повторно!

Простой преобразователь для питания энергосберегающих ламп

Иногда встречаются различные обсуждения, но слишком поверхностно.
Кто делал, поделитесь решением

Вот типичная схема энергосберегающей лампы, не помню откуда стыренная:

Что я делаю: на дроссель L3 доматываю вторичную обмотку на сколько позволяет свободное место, которая идет на диодный мост из быстрых диодов и в нагрузку.
Все 4 выводы лампы закорачиваю.

Все хорошо — схема не греется, ток в нагрузку идет. Но напряжения маловато, ток получается небольшим. Или надо перематывать обе обмотки более тонким проводом (свободного места нет) чтобы уместить больше вторички, или ?

Иду по правильному пути: устраняю зазор в дросселе (теперь уже трансформаторе): отлично — напряжение сразу существенно увеличилось и ток тянет очень хорошо. Доволен. Но тут проблема: транзисторы начинают перегреваются, без радиатора никак. Даже на таком маленьком токе, при котором на дросселе с зазором все было холодное. А почему начинают греться транзисторы если устраняю зазор?

У меня нет цели снять максимальную мощность, а хотя-бы половину.
Пытаюсь получить с 5 Вт лампы ток 250 мА при напряжении 14 В.

_________________
() Паяю только медным жалом.
_/_ . . А не вступить ли мне в секту любителей "TS100"?

Подбросив вместо дросселя трансформатор из зарядника телефона, получил такой эффект — транзисторы вообще холодные, при том что достаточно неплохой ток на выходе получаю. Но напряжения чуть чуть не хватает.

Я так понял нужно правильный трансформатор сделать и все.

Вопрос — с зазором или без?

_________________
() Паяю только медным жалом.
_/_ . . А не вступить ли мне в секту любителей "TS100"?

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

_________________
Я рожден при социализме, и я этим горжусь!

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Ну это само собой разумеется.

Вопрос про схему, что выложена в первом посте.

_________________
() Паяю только медным жалом.
_/_ . . А не вступить ли мне в секту любителей "TS100"?

Компэл 28 октября приглашает всех желающих принять участие в вебинаре, где будет рассмотрена новая и перспективная продукция компании Traco. Мы подробно рассмотрим сильные стороны и преимущества продукции Traco, а также коснемся практических вопросов, связанных с измерением уровня шумов, промывкой изделий после пайки и отдельно разберем, как отличить поддельный ИП Traco от оригинала.

_________________
Мудрость приходит вместе с импотенцией.

Управление лампами накаливания автомобиля – одна из задач, прекрасно решаемых интеллектуальными ключами PROFET+ производства Infineon. Однако, в силу больших пусковых токов при включении ламп, разработка узлов их коммутации на основе этих ключей требует учета всех особенностей и характеристик как самих ламп, так и системы электропитания конкретной модели автомобиля.

От дросселя вижу как сильно зависит все, сложно подобрать что-то.

Лампа Camelion LH5-2U 5W (транзисторы 13001, но заменил на более мощные на время "допиливания")
Как уже говорил, с зазором в дросселе — ток и напряжение не очень большие. Без зазора — большие, но схема перегревается. Я добился хорошей работы отрегулировав зазор методом научного тыка — теперь работает именно так как и хотел, нагрева транзисторов почти нет.
Зазор устраняется собиранием их двух дросселей одного (зазор в одной половинке сердечника).

Не на всех дросселях остается место для намотки второй обмотки. У меня есть выбор — я взял тот, в котором было место. А если нет — наверно нужно будет перематывать более тонкой проволокой аккуратно виток к витку. Причём я так понял чем больше витков первички — тем лучше.

Окончательная схема, которая отправляется на долгую и счастливую работу:

Если нужно что-то делать по другому — скажите пожалуйста, не молчите.

Если кто-то будет тоже пытаться что-то делать — обязательно включайте схему через лампочку небольшой мощности (20-60 Вт), по ней сразу видно аномальное потребление, частенько у меня возникающее во время экспериментов с трансформатором.

_________________
() Паяю только медным жалом.
_/_ . . А не вступить ли мне в секту любителей "TS100"?

Как сделать блок питания из эконом лампы

Привет, друзья. В эпоху светодиодных технологий многие все еще предпочитают для освещения использовать люминесцентные лампы (они же экономки). Это разновидность газоразрядных ламп, которые многие считают, мягко скажем, не очень безопасным видом освещения.

Но, вопреки всем сомнениям, они успешно висели в наших домах не одно десятилетие, поэтому у многих сохранились нерабочие эконом-лампы.

Как мы знаем, для работы многих газоразрядных ламп требуется высокое напряжение, порой в разы выше, чем напряжение в сети и обычная экономка тоже не исключение.

 импульсные преобразователи

В такие лампы встроены импульсные преобразователи, или балласты. Как правило, в бюджетных вариантах применяется полумостовой автогенераторный преобразователь по очень популярной схематике. Схема такого блока питания работает довольно надежно, несмотря на полное отсутствие каких-либо защит, помимо предохранителя. Тут нет даже нормального задающего генератора. Цепь запуска построена на базе симметричного диака.

диак

Схема та же, что и у электронного трансформатора , только вместо понижающего трансформатора оттуда использован накопительный дроссель. Я намерен быстро и понятно показать вам, как можно такие блоки питания превратить в полноценный импульсный источник питания понижающего типа, плюс обеспечить гальваническую развязку от сети для безопасной эксплуатации.

Для начала хочу сказать, что переделанный блок может быть использован в качестве основы для зарядных устройств, блоков питания для усилителей. В общем, можно внедрить там, где есть нужда в источнике питания.

Нужно лишь доработать выход диодным выпрямителем и сглаживающей емкостью.

доработать выход диодным выпрямителем

Подойдет для переделки любая экономка любой мощностью. В моем случае -это полностью рабочая лампа на 125 Ватт. Лампу сначала нужно вскрыть, достать блок питания, а колба нам больше не нужна. Даже не вздумайте ее разбивать, поскольку там содержатся очень токсичные пары ртути, которые смертельно опасны для живых организмов.

Первым делом смотрим на схему балласта.

схему балласта

Они все одинаковые, но могут отличаться количеством дополнительных компонентов. На плате сразу бросается в глаза довольно массивный дроссель. Разогреваем паяльник и выпаиваем его.

массивный дроссель

Дальше находим убитый блок питания от компьютера. Нам нужен только силовой импульсный трансформатор.

силовой трансформатор

На плате у нас имеется также маленькое колечко.

маленькое колечко

Это трансформатор обратной связи потоку и он состоит из трех обмоток, две из которых являются задающими,

трансформатор обратной связи потоку

а третья является обмоткой обратной связи потоку и содержит всего один виток.

третья

А теперь нам нужно подключить трансформатор от компьютерного блока питания так, как показано по схеме.

 показано по схеме

То есть один из выводов сетевой обмотки подключается к обмотке обратной связи.

 показано по схеме

Второй вывод подключается к точке соединения двух конденсаторов полумоста.

Читайте также  Снеговик из лампочки

 точке соединения двух конденсаторов полумоста

Да, друзья, на этом процесс завершен. Видите, насколько все просто.

Теперь я нагружу выходную обмотку трансформатора, чтобы убедиться в наличии напряжения.

нагрузка

Не забываем, начальный запуск балласта делается страховочной лампочкой. Если блок питания нужен на малую мощность, можно обойтись вообще без всякого трансформатора, и вторичную обмотку обмотать на непосредственно сам дроссель.

дроссель

Не помешало бы установить силовые транзисторы на радиаторы. В ходе работы под нагрузкой их нагрев – это естественное явление.

силовые транзисторы

Вторичную обмотку трансформатора можно сделать на любое напряжение.

Для этого нужно его перемотать, но если блок нужен, например, для зарядного устройства автомобильного аккумулятора, то можно обойтись без всяких перемоток. Для выпрямителя стоит использовать импульсные диоды, опять же, оптимальное решение – это наше КД213 с любой буквой.

В конце хочу сказать, что это только один из вариантов переделки таких блоков. Естественно, существует множество иных способов. На этом, друзья, все. Ну а с вами, как всегда, был KASYAN AKA. До новых встреч. Пока!

Как сделать блок питания из энергосберегающей лампы

Энергосберегающие лампы представляют собой сложные приборы, элементы которых могут использоваться в радиотехнике для создания новых устройств. В частности, можно сделать блок питания из ЭПРА энергосберегающей лампы.

Устройство и принцип работы ЭПРА

Электронный пускорегулирующий аппарат (ЭПРА) – важный компонент энергосберегающей лампы, отвечающий за активацию контактов и поддерживающий стабильное свечение без пульсаций.

Блок ЭПРА присутствует практически во всех люминесцентных светильниках, создающих свет нагревом инертных газов или паров ртути в замкнутом объеме.

Элемент ЭПРА из энерго лампы

ЭПРА состоит из элементов:

  • фильтр для отсечения помех питающей сети;
  • выпрямитель;
  • устройство для корректировки мощности;
  • сглаживающий фильтр на выходе;
  • дополнительная нагрузка (балласт);
  • инвертор.

В целях экономии производители могут усиливать одни элементы и избавляться от других. Это влияет на различие параметров ЭПРА, представленных на рынке.

Пускорегулирующий аппарат питается током от сети и создает постоянное напряжение, поступающее на контакты лампы. Схема является импульсным блоком питания или драйвером, который может быть преобразован в полноценный БП для использования в других электрических цепях.

БП своими руками

Создание ИБП из энергосберегающих ламп включает в себя подготовительный этап и процесс преобразования. Все действия важно выполнять с соблюдением техники безопасности при работе с электроприборами.

Подготовка инструментов и материалов

Схема стандартной энергосберегающей лампы представлена на рисунке ниже. Красные элементы нужны для запуска лампы и при сборке блока питания не потребуются.

Принципиальная схема люминесцентной лампы

Схема напоминает импульсный блок питания. Различия касаются только встроенного дросселя. Его необходимо заменить на трансформатор одним из методов:

  • намотка на существующий дроссель вторичной обмотки с соответствующими параметрами;
  • полное удаление дросселя и установка на его место подходящего по эксплуатационным показателям трансформатора из другого электроприбора.

При разработке энергосберегающей лампы изготовители особенное внимание уделяют компактности прибора. Все элементы подбираются так, чтобы не занимать много места. По этой причине о запасе мощности речи не идет. Желательно создавать блок питания в пределах изначальной мощности осветительного прибора. Это гарантирует долговечность схемы и убережет от перегрева.

Схема переделки ЭПРА в ИБП

Переделка ЭПРА в блок питания содержит:

  1. Создание гальванической развязки для безопасности схемы.
  2. Понижение выходного напряжения.
  3. Выпрямление выходного напряжения.

Для создания БП с мощностью до 15 Вт потребуется обмоточный провод (около 10 см), набор диодов (4 штуки), два конденсатора и электронный балласт от лампы мощностью 40 Вт.

Доработанная схема имеет вид.

Схема ЭПРА, переделанного в импульсный блок питания

Дроссель выполняет функции развязывающего и понижающего трансформатора, комплект диодов выпрямляет переменное напряжение. Конденсаторы в схеме сглаживают импульсы и обеспечивают стабильные показатели подающегося на электроприбор питания.

Порядок работы при переделке:

  1. Из первоначальной схемы удаляются колба и конденсатор рядом с ней.
  2. Все выводы лампы соединяются между собой, замыкая конденсаторы и дроссель, ранее идущие на лампочку.
  3. Дроссель при этом становится основной нагрузкой схемы. Остается домотать на него вторичную обмотку проводом диаметром не более 0,8 мм. Достаточно нескольких витков.

Намотка вторичной обмотки на дроссель

Чтобы определить точное количество витков вторичной обмотки, используйте следующую методику:

  1. На дроссель наматывается 10 витков, после чего подключается диодный мост.
  2. Схема нагружается резистором 30 Вт с сопротивлением около 5 Ом.
  3. При помощи мультиметра замеряется напряжение на резисторе.
  4. Полученное напряжение делится на 10 (количество витков), тем самым получая напряжение с одного витка.
  5. Нужное напряжение делится на вычисленный показатель. Это искомое количество витков вторичной обмотки.

В схеме могут быть использованы любые диоды, рассчитанные на обратное напряжение выше 25 В и ток 1 А.

Недостатком подобной схемы является нестабильность выходного напряжения. Решить проблему можно установкой дополнительного стабилизатора на 12 вольт.

Можно ли увеличить мощность

Мощность созданного из ЭПРА блока питания обычно не превышает 40 Вт, чего может быть недостаточно. К тому же установленный в схеме дроссель вводит дополнительные ограничения. Система попросту не может достичь максимальной мощности и даже показатель в 40 Вт наблюдается нечасто. Увеличение тока не дает необходимого эффекта, поскольку магнитопровод начинает функционировать в режиме насыщения, уменьшая КПД схемы.

импульсный трансформатор

Для увеличения мощности БП достаточно подключить вместо стандартного дросселя импульсный трансформатор. Процесс сложнее переделки энергосберегающей лампы, однако все равно его можно осуществить своими руками при наличии знаний в области радиотехники.

Трансформатор можно достать из компьютерного блока питания или другого оборудования. Дополнительно требуются резистор сопротивлением 5 Ом мощностью 3 Вт и высоковольтный конденсатор емкостью около 100 мкФ с рабочим напряжением 350 В.

Схема подключения представлена ниже.

Схема блока питания из ЭПРА с импульсным трансформатором для повышения мощности

Импульсный трансформатор устанавливается на место дросселя. Первичная обмотка подключается к преобразователю, вторичная является понижающей. Увеличение мощности резистора и емкости конденсатора завершают изменение стандартной схемы блока питания на основе ЭПРА.

Теперь возможно отдать ток 8 А при напряжении 12 В. Значит БП можно использовать в шуруповертах или бытовых приборах с похожими требованиями.

Как избежать ошибок

Чтобы с блоком питания из ЭПРА не возникало проблем, соблюдайте рекомендации:

Блок питания: что можно сделать из энергосберегающей лампы?

Несмотря на небольшие размеры энергосберегающих ламп, в них много электронных компонентов. По своему устройству это обычная трубчатая люминесцентная лампа с миниатюрной колбой, но только свернутой в спираль или иную пространственную компактную линию. Ее поэтому называют компактной люминесцентной лампой (в сокращении КЛЛ).

И для нее характерны все те же самые проблемы и неисправности, что и для больших трубчатых лампочек. Но электронный балласт лампочки, которая перестала светить, скорее всего, из-за перегоревшей спирали, обычно сохраняет свою работоспособность. Поэтому его можно использовать для каких-либо целей как импульсный блок питания (в сокращении ИБП), но с предварительной доработкой. Об этом и пойдет речь далее. Наши читатели узнают, как сделать блок питания из энергосберегающей лампы.

В чем разница между ИБП и электронным балластом

Сразу предупредим тех, кто ожидает получение мощного источника питания из КЛЛ – большую мощность получить в результате простой переделки балласта нельзя. Дело в том, что в катушках индуктивности, которые содержат сердечники, рабочая зона намагничивания жестко ограничена конструкцией и свойствами намагничивающего напряжения. Поэтому импульсы этого напряжения, создаваемые транзисторами, точно подобраны и определены элементами схемы. Но такой блок питания из ЭПРА вполне достаточен для питания светодиодной ленты. Тем более что импульсный блок питания из энергосберегающей лампы соответствует ее мощности. А она может быть до 100 Вт.

Читайте также  Резак по металлу из старых ножовок

Наиболее распространенная схема балласта КЛЛ построена по схеме полумоста (инвертора). Это автогенератор на основе трансформатора TV. Обмотка TV1-3 намагничивает сердечник и выполняет при этом функцию дросселя для ограничения тока через лампу EL3. Обмотки TV1-1 и TV1-2 обеспечивают положительную обратную связь для появления напряжения, управляющего транзисторами VT1и VT2. На схеме красным цветом показана колба КЛЛ с элементами, которые обеспечивают ее запуск.

Пример распространённой схемы балласта ККЛ

Пример распространенной схемы балласта КЛЛ

Все катушки индуктивности и емкости в схеме подобраны так, чтобы получить в лампе точно дозированную мощность. С ее величиной связана работоспособность транзисторов. А поскольку они не имеют радиаторов, не рекомендуется стремиться получать от переделанного балласта значительную мощность. В трансформаторе балласта нет вторичной обмотки, от которой питается нагрузка. В этом главное отличие его от ИБП.

В чем суть реконструкции балласта

Чтобы получить возможность подключения нагрузки к отдельной обмотке, надо либо намотать ее на дросселе L5, либо применить дополнительный трансформатор. Переделка балласта в ИБП предусматривает:

    разборку корпуса балласта КЛЛ. Это можно сделать отверткой, которую надо поочередно, шаг за шагом вставлять по линии соприкосновения его деталей. Прилагаемое к лампе усилие не должно быть чрезмерным для колбы. Надо постараться давить на нее с минимальной силой.

Для дальнейшей переделки электронного балласта в блок питания из энергосберегающей лампы надо принять решение относительно трансформатора:

  • использовать имеющийся дроссель, доработав его;
  • либо применить новый трансформатор.

Трансформатор из дросселя

Далее рассмотрим оба варианта. Для того чтобы воспользоваться дросселем из электронного балласта, его надо выпаять из платы и затем разобрать. Если в нем применен Ш-образный сердечник, он содержит две одинаковые части, которые соединены между собой. В рассматриваемом примере для этой цели применена оранжевая клейкая лента. Она аккуратно удаляется.

Удаление ленты стягивающей половинки сердечника

Удаление ленты, стягивающей половинки сердечника

Половинки сердечника обычно склеены так, чтобы между ними оставался зазор. Он служит для оптимизации намагничивания сердечника, замедляя этот процесс и ограничивая скорость нарастания тока. Берем наш импульсный паяльник и нагреваем сердечник. Прикладываем его к паяльнику местами соединения половинок.

Рассоединяем склеенные половины сердечника

Рассоединяем склеенные половины сердечника

Разобрав сердечник, получаем доступ к катушке с намотанным проводом. Обмотку, которая уже есть на катушке, отматывать не рекомендуется. От этого изменится режим намагничивания. Если свободное место между сердечником и катушкой позволяет обернуть один слой стеклоткани для улучшения изоляции обмоток друг от друга, надо сделать это. А потом намотать десять витков вторичной обмотки проводом подходящей толщины. Поскольку мощность нашего блока питания будет небольшой, толстый провод не нужен. Главное, чтобы он поместился на катушке, и половинки сердечника наделись на него.

Разобранный дроссель

Разобранный дроссель

Намотав вторичную обмотку, собираем сердечник и закрепляем половинки клейкой лентой. Предполагаем, что после тестирования БП станет понятно, какое напряжение создается одним витком. После тестирования разберем трансформатор и добавим необходимое число витков. Обычно переделка имеет целью сделать преобразователь напряжения с выходом 12 В. Это позволяет получить при использовании стабилизации зарядное устройство для аккумулятора. На такое же напряжение можно сделать и драйвер для светодиодов из энергосберегающей лампы, а также зарядить фонарик с питанием от аккумулятора.

Поскольку трансформатор нашего ИБП, скорее всего, придется доматывать, впаивать его в плату не стоит. Лучше припаять проводки, торчащие из платы, и к ним на время тестирования припаять выводы нашего трансформатора. Концы выводов вторичной обмотки надо очистить от изоляции и покрыть припоем. Затем либо на отдельной панельке, либо прямо на выводах намотанной обмотки надо собрать выпрямитель на высокочастотных диодах по схеме моста. Для фильтрации в процессе измерения напряжения достаточно конденсатора 1 мкФ 50 В.

Готовая к тестированию плата с выпрямителемГотовая к тестированию плата с выпрямителем Схема импульсного блока питанияСхема импульсного блока питания

Тестирование ИБП

Но перед присоединением к сети 220 В последовательно с нашим блоком, переделанным своими руками из лампы, обязательно соединяется мощный резистор. Это мера соблюдения безопасности. Если через импульсные транзисторы в блоке питания потечет ток короткого замыкания, резистор его ограничит. Очень удобным резистором в таком случае может стать лампочка накаливания на 220 В. По мощности достаточно применить 40–100-ваттную лампу. При коротком замыкании в нашем устройстве лампочка будет светиться.

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Последовательное соединение платы с лампочкой перед подачей напряжения 220 В

Далее присоединяем к выпрямителю щупы мультиметра в режиме измерения постоянного напряжения и подаем напряжение 220 В на электрическую цепь с лампочкой и платой источника питания. Предварительно обязательно изолируются скрутки и открытые токоведущие части. Для подачи напряжения рекомендуется применить проводной выключатель, а лампочку вложить в литровую банку. Иногда они при включении лопаются, а осколки разлетаются по сторонам. Обычно испытания проходят без проблем.

Более мощный ИБП с отдельным трансформатором

Они позволяют определить напряжение и необходимое число витков. Трансформатор дорабатывается, блок снова испытывается, и после этого его можно применить как компактный источник питания, который намного меньше аналога на основе обычного трансформатора 220 В со стальным сердечником.

Чтобы увеличить мощность источника питания, надо применить отдельный трансформатор, сделанный аналогично из дросселя. Его можно извлечь из лампочки большей мощности, сгоревшей полностью вместе с полупроводниковыми изделиями балласта. За основу берется та же схема, которая отличается присоединением дополнительного трансформатора и некоторых других деталей, изображенных красными линиями.

ИБП с дополнительным трансформатором

ИБП с дополнительным трансформатором

Выпрямитель, показанный на изображении, содержит меньше диодов по сравнению с выпрямительным мостом. Но для его работы потребуется больше витков вторичной обмотки. Если они не вмещаются в трансформатор, надо применить выпрямительный мост. Более мощный трансформатор делается, например, для галогенок. Кто использовал обычный трансформатор для системы освещения с галогенками, знает, что они питаются достаточно большим по величине током. Поэтому трансформатор получается громоздким.

Если транзисторы разместить на радиаторах, мощность одного блока питания можно заметно увеличить. А по весу и габаритам даже несколько таких ИБП для работы с галогенными светильниками получатся меньше и легче одного трансформатора со стальным сердечником равной им мощности. Другим вариантом использования работоспособных балластов экономок может быть их реконструкция для светодиодной лампы. Переделка энергосберегающей лампы в светодиодную конструкцию очень проста. Лампа отсоединяется, а вместо нее подключается диодный мост.

На выходе моста подключается определенное количество светодиодов. Их можно подключить между собой последовательно. Важно, чтобы ток светодиода равнялся току в КЛЛ. Энергосберегающие лампочки можно назвать ценным полезным ископаемым в эпоху светодиодного освещения. Они могут найти применение даже после завершения своего срока службы. И теперь читатель знает детали этого применения.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: